
Creating a Database
Upgrading to Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

How-To Guides

ClickHouse is a high-performance columnar database designed for real-time analytical processing.
It’s known for its blazing speed, horizontal scalability, and efficient use of disk I/O. Proper setup is
essential for taking advantage of ClickHouse’s full capabilities, including fault tolerance, secure
access, and high query performance. This guide walks through various ways to run and connect to
ClickHouse: using the ClickHouse CLI (clickhouse-client), Docker containers, and command-line
tools for scripting and automation. Best practices are highlighted throughout to ensure robust
deployments.

The ClickHouse command-line interface (clickhouse-client) is a built-in tool used to connect to and
manage ClickHouse servers. It supports both local and remote connections and allows for SQL-
based interaction with the database engine.

If you’re running ClickHouse locally (via package manager or Docker), you can start the CLI with:

For remote connections, specify the hostname, port (default 9000), and user credentials:

Once connected, you can run SQL queries directly from the shell.

Docker provides a fast, reproducible way to run ClickHouse in isolated environments. This is ideal
for local development or self-contained production setups.

If you’re using Elestio for ClickHouse hosting, log into the Elestio dashboard. Go to your ClickHouse
service, then navigate to Tools > Terminal to open a pre-authenticated shell session.

Creating a Database

Creating using clickhouse-client

Connect to ClickHouse:

clickhouse-client

clickhouse-client -h <host> --port <port> -u <username> --password

Running ClickHouse Using Docker

Access Elestio Terminal

Now change the directory:

Elestio-managed services run on Docker Compose. Use this to enter the ClickHouse container:

Once inside the container, the clickhouse-client tool is available. Run it like this (add --password if
needed):

You are now connected to the running ClickHouse instance inside the container.

cd /opt/app/

Access the ClickHouse Container Shell

docker-compose exec clickhouse bash

Access ClickHouse CLI from Inside the Container

clickhouse-client -u <user> --port <port> --password

Test Connectivity

https://docs.elest.io/uploads/images/gallery/2025-06/Cntimage.png

Try creating a database and querying data to verify functionality:

Expected Output:

This confirms read/write operations and query functionality.

clickhouse-client can be used non-interactively for scripting, automation, and cron-based jobs.

For example, to insert data from a shell script:

This is useful for automated ETL jobs, health checks, or backup pipelines.

Adopt consistent naming conventions for databases, tables, and columns. Use lowercase,
underscore-separated names like:

This improves clarity in multi-schema environments and helps with automation and maintenance
scripts.

CREATE DATABASE test_db;

CREATE TABLE test_db.test_table (id UInt32, message String) ENGINE = MergeTree() ORDER BY id;

INSERT INTO test_db.test_table VALUES (1, 'Hello ClickHouse');

SELECT * FROM test_db.test_table;

1	Hello ClickHouse

Connecting Using clickhouse-client in
Scripts

echo "INSERT INTO test_db.test_table VALUES (2, 'Automated')" | \

clickhouse-client -h <host> -u <user> --password

Best Practices for Setting Up
ClickHouse
Use Clear Naming for Databases and Tables

user_events_2024

product_sales_agg

Choose the Right Engine and Indexing Strategy

ClickHouse supports various table engines like MergeTree, ReplacingMergeTree, and
SummingMergeTree. Pick the engine that best matches your use case and define ORDER BY keys
carefully to optimize performance.

Example:

Inappropriate engine selection can lead to poor query performance or high disk usage.

Always configure user-level authentication and restrict access in production. Add users and
passwords in users.xml or via SQL:

Use TLS for encrypted connections by enabling SSL in the config.xml file:

ClickHouse stores data on disk by default, but ensure proper mounting, storage separation, and
backup routines.

In config.xml:

CREATE TABLE logs (

 timestamp DateTime,

 service String,

 message String

) ENGINE = MergeTree()

ORDER BY (timestamp, service);

Enable Authentication and Secure Access

CREATE USER secure_user IDENTIFIED WITH plaintext_password BY 'strong_password';

GRANT ALL ON *.* TO secure_user;

<tcp_port_secure>9440</tcp_port_secure>

<openSSL>

 <server>

 <certificateFile>/etc/clickhouse-server/certs/server.crt</certificateFile>

 <privateKeyFile>/etc/clickhouse-server/certs/server.key</privateKeyFile>

 </server>

</openSSL>

Configure Data Persistence and Storage Paths

<path>/var/lib/clickhouse/</path>

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

<user_files_path>/var/lib/clickhouse/user_files/</user_files_path>

Use RAID, SSDs, or networked volumes depending on your availability and performance needs.

Use built-in introspection tools like:

For real-time observability, integrate with Grafana, Prometheus, or use ClickHouse Keeper metrics.

Also review:

system.mutations for long-running mutation jobs
system.errors for crash/debug info
system.replication_queue for sync issues in replicated tables

Issue Cause Solution

Authentication failure Wrong password or no user set Double-check credentials; use --
password flag

Cannot connect to localhost Service not running or incorrect port Ensure ClickHouse is running and
check the port

SSL/TLS handshake failed Incorrect certificate paths or
permissions

Verify file locations in config.xml and
restart service

Queries are slow Poor ORDER BY design or unoptimized
table engine

Reevaluate schema design and use
indexes effectively

Data lost after restart Misconfigured data path or ephemeral
container

Ensure proper disk volume mounts
and storage persistence

Monitor and Tune Performance

SELECT * FROM system.metrics;

SELECT * FROM system.query_log ORDER BY event_time DESC LIMIT 10;

SELECT * FROM system.parts;

Common Issues and Their Solutions

https://clickhouse.com/docs/en/operations/monitoring/metrics/

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-10-38-am.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-12-02-am.jpg

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background.

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-12-50-am.jpg

ClickHouse supports custom extensions via [User Defined Functions (UDFs)], external
dictionaries, and shared libraries that extend its core capabilities with custom logic, formats, or
integrations. These behave similarly to modules or plugins in other systems and must be
configured at server startup. Common examples include integration with geospatial libraries,
custom UDFs, or external dictionary sources like MySQL or HTTP.

In Elestio-hosted ClickHouse instances or any Docker Compose-based setup, extensions can be
added by mounting external libraries or configuration files and referencing them in config.xml or
users.xml. This guide walks through how to install, load, and manage ClickHouse extensions using
Docker Compose along with best practices and common troubleshooting steps.

ClickHouse extensions are typically compiled as shared objects (.so) files or defined as
configuration files for dictionaries or formats. These files must be mounted into the container and
referenced explicitly in the server’s configuration files.

Suppose you have a compiled UDF called libexample_udf.so. To include it in a Docker Compose
setup:

Mount the shared library into the container:

Installing and Updating an
Extension

Installing and Enabling ClickHouse
Extensions

Example: Load Custom Shared Library UDF

Update docker-compose.yml

services:

 clickhouse:

 image: clickhouse/clickhouse-server:latest

 volumes:

 - ./modules/libexample_udf.so:/usr/lib/clickhouse/user_defined/libexample_udf.so

 - ./configs/config.xml:/etc/clickhouse-server/config.xml

 ports:

 - "8123:8123"

./modules/libexample_udf.so: local path to the shared library on the host.
/usr/lib/clickhouse/user_defined/: default directory for user libraries inside the container.

Make sure the file exists before running Docker Compose.

In your custom config.xml:

After updating the Compose and configuration files, restart the service:

This will reload ClickHouse with the specified UDF.

Connect using the ClickHouse CLI or HTTP interface and run:

If successful, the function will return expected results from the loaded library. You can also confirm
the server loaded your shared library by inspecting logs:

Look for lines that indicate the library was found and loaded.

 - "9000:9000"

Configure config.xml to Load the UDF

<user_defined>

 <function>

 <name>example_udf</name>

 <type>udf</type>

 <library>libexample_udf.so</library>

 </function>

</user_defined>

The library path must match the volume mount location.“
Restart the ClickHouse Service

docker-compose down

docker-compose up -d

Verify the Extension is Loaded

SELECT example_udf('test input');

docker-compose logs clickhouse

ClickHouse supports loading external data sources (like MySQL, HTTP APIs, or files) as dictionaries

In docker-compose.yml:

Example dictionary file (mysql_dictionary.xml):

Use the dictionary in queries:

Managing External Dictionaries

Mount Dictionary Configuration

volumes:

 - ./configs/dictionaries/:/etc/clickhouse-server/dictionaries/

Reference in config.xml

<dictionaries_config>/etc/clickhouse-server/dictionaries/*.xml</dictionaries_config>

<dictionary>

 <name>mysql_dict</name>

 <source>

 <mysql>

 <host>mysql-host</host>

 <user>root</user>

 <password>password</password>

 <db>test</db>

 <table>cities</table>

 </mysql>

 </source>

 <layout><flat /></layout>

 <structure>

 <id>id</id>

 <attribute>

 <name>name</name>

 <type>String</type>

 </attribute>

 </structure>

</dictionary>

ClickHouse doesn’t support unloading UDFs or dictionaries at runtime. To modify or remove an
extension:

1. Stop the container:

2. Edit config files:

Replace or remove the <function> entry in config.xml or dictionary config.
Replace or remove the .so file if applicable.

3. Restart the container:

Issue Cause Resolution

ClickHouse fails to start Invalid config or missing .so file Run docker-compose logs clickhouse
and fix missing files or XML syntax

UDF not recognized Wrong library path or missing
permissions

Ensure volume mount is correct and
file is executable inside container

Dictionary not available Config file not found or misconfigured
XML

Double-check dictionaries_config and
validate with SHOW DICTIONARIES

Segmentation fault Invalid shared library or ABI mismatch Recompile UDF for correct platform,
verify against installed ClickHouse
version

Query fails silently Dictionary or UDF not fully loaded Recheck server logs for errors during
startup

SELECT dictGetString('mysql_dict', 'name', toUInt64(42));

Updating or Removing Extensions

docker-compose down

docker-compose up -d

Always test changes in staging before deploying to production.“

Troubleshooting Common Extension
Issues

ClickHouse extensions especially shared libraries run with the same privileges as the ClickHouse
server. Be cautious:

Only load trusted .so files from verified sources.
Ensure clickhouse user has restricted permissions inside the container.
Never expose dictionary or UDF paths to writable directories from external systems.

Avoid using custom UDFs or dictionaries from unknown sources in production environments without
a thorough code review.

Security Considerations

Regular backups are essential when running a ClickHouse deployment, especially if you’re using it
for persistent analytics or time-series data. While Elestio handles automated backups by default,
you may want to create manual backups before configuration changes, retain a local archive, or
test backup automation. This guide walks through multiple methods for creating ClickHouse
backups on Elestio, including dashboard snapshots, command-line approaches, and Docker
Compose-based setups. It also explains backup storage, retention, and automation using scheduled
jobs.

If you’re using Elestio’s managed ClickHouse service, the simplest way to perform a full backup is
directly through the Elestio dashboard. This creates a snapshot of your current ClickHouse dataset
and stores it in Elestio’s infrastructure. These snapshots can be restored later from the same
interface, which is helpful when making critical changes or testing recovery workflows.

To trigger a manual ClickHouse backup on Elestio:

Log in to the Elestio dashboard.
Navigate to your ClickHouse service or cluster.
Click the Backups tab in the service menu.
Choose Back up now to generate a manual snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

https://docs.elest.io/uploads/images/gallery/2025-06/xU6screenshot-2025-06-11-at-11-10-38-am.jpg

This method is recommended for quick, reliable backups without needing to use the command line.

If your ClickHouse instance is deployed via Docker Compose (as is common on Elestio-hosted
environments), you can manually back up ClickHouse by either copying its internal storage files or
using the native BACKUP SQL command (available in ClickHouse v21.12+). These approaches allow
you to maintain control over backup logic and frequency.

Go to your deployed ClickHouse service in the Elestio dashboard, navigate to Tools > Terminal,
and log in using the credentials provided.

Navigate to your app directory:

This is the working directory of your Docker Compose project, which contains the docker-
compose.yml file.

If you’re using ClickHouse with backup support enabled, you can execute:

This creates a full backup of the default database inside the container at /backups.

Use docker cp to move the backup directory to your host system:

This gives you a restorable backup snapshot for storage or future recovery.

Manual Backups Using Docker
Compose

Access Elestio Terminal

Locate the ClickHouse Container Directory

cd /opt/app/

Trigger a Backup (Using SQL)

docker-compose exec clickhouse clickhouse-client --query="BACKUP DATABASE default TO

Disk('/backups/backup_$(date +%F)')"

Copy Backup Files from the Container

docker cp $(docker-compose ps -q clickhouse):/backups/backup_$(date +%F)

./clickhouse_backup_$(date +%F)

After creating backups, it’s important to store them securely and manage retention properly.
ClickHouse backups can grow large depending on the volume and compression of your data.

Use clear naming: clickhouse_backup_2025_06_09
Store off-site or on cloud storage (e.g. AWS S3, Backblaze, encrypted storage)
Retain: 7 daily backups, 4 weekly backups, and 3–6 monthly backups
Automate old file cleanup with cron jobs or retention scripts
Optionally compress backups with tar, gzip, or xz to reduce space

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Edit the crontab:

Add a job like:

Make sure /backups/ exists and is writable by the cron user.

You can also compress the file or upload to cloud storage in the same script:

Backup Storage & Retention Best
Practices

Guidelines to Follow:

Automating ClickHouse Backups
(cron)

Example: Daily Backup at 3 AM

crontab -e

0 3 * * * docker-compose -f /opt/app/docker-compose.yml exec clickhouse \

clickhouse-client --query="BACKUP DATABASE default TO Disk('/backups/backup_$(date +\%F)')" &&

\

docker cp $(docker-compose -f /opt/app/docker-compose.yml ps -q

clickhouse):/backups/backup_$(date +\%F) /backups/clickhouse_backup_$(date +\%F)

Format Description Restore Method

/backups/backup_<date> SQL-based backup using BACKUP
command

Use RESTORE DATABASE from the same Disk location

.tar.gz or .tar archive Filesystem snapshot of
/var/lib/clickhouse

Stop ClickHouse, extract data back into the directory,
then restart

Stop ClickHouse:

Restore via SQL:

Or restore from file-based archive:

tar -czf /backups/clickhouse_backup_$(date +\%F).tar.gz /backups/clickhouse_backup_$(date

+\%F)

rclone copy /backups/clickhouse_backup_$(date +\%F).tar.gz remote:clickhouse-backups

Backup Format and Restore Notes

To restore from a backup:

docker-compose down

docker-compose exec clickhouse clickhouse-client --query="RESTORE DATABASE default FROM

Disk('/backups/backup_2025-06-09')"

tar -xzf clickhouse_backup_2025-06-09.tar.gz -C /opt/app/data/clickhouse/

docker-compose up -d

Restoring ClickHouse backups is essential for disaster recovery, staging environment duplication,
or rolling back to a known state. Elestio supports backup restoration both through its web
dashboard and manually through Docker Compose and command-line methods. This guide explains
how to restore ClickHouse backups from SQL-based snapshots or file-based archives, covering both
full and partial restore scenarios, and includes solutions for common restoration issues.

This method applies when you have a backup created using ClickHouse’s native BACKUP command
or a direct copy of the data directory. To restore the backup, you must stop the running ClickHouse
container, replace the data files, and restart the container to load the restored dataset.

Shut down the ClickHouse container cleanly to avoid issues with open file handles or inconsistent
state:

If your backup was created using the native ClickHouse BACKUP command and saved to
/backups/backup_2025_06_09, copy it into the appropriate path within the container or bind mount.

Example:

Make sure this path corresponds to the volumes specified in your docker-compose.yml. For
example:

If you’re restoring from a tarball archive, extract it into the correct volume mount:

Restoring a Backup

Restoring from a Backup via
Terminal

Stop the ClickHouse Container

docker-compose down

Replace the Backup Files

cp -r ./clickhouse_backup_2025_06_09 /opt/app/backups/backup_2025_06_09

volumes:

 - ./backups:/backups

 - ./data:/var/lib/clickhouse

Start the ClickHouse container again:

ClickHouse will load the data either from the standard data directory or, if using the backup
snapshot method, you can explicitly restore the database using SQL (next section).

If you’re using backups made with the SQL BACKUP command, ClickHouse also provides a built-in
method to restore via the RESTORE command.

Enter the container terminal:

Then run the restore command:

This will restore the default database and its contents from the previously created backup
directory.

ClickHouse supports more granular restore operations using SQL syntax. You can restore individual
tables or databases if the backup was created using the native BACKUP command.

tar -xzf clickhouse_backup_2025_06_09.tar.gz -C /opt/app/data/

Restart ClickHouse

docker-compose up -d

Restoring via Docker Compose
Terminal

Copy the Backup Directory into the Container

docker cp ./clickhouse_backup_2025_06_09 $(docker-compose ps -q

clickhouse):/backups/backup_2025_06_09

Restore with ClickHouse SQL

docker-compose exec clickhouse bash

clickhouse-client --query="RESTORE DATABASE default FROM Disk('/backups/backup_2025_06_09')"

Partial Restores in ClickHouse

This restores just the events table from the default database without affecting other tables.

You can also export and import CSV or TSV snapshots for partial data management:

Restoring ClickHouse data can occasionally fail due to permission issues, path mismatches,
unsupported formats, or version conflicts. Here are some frequent issues and their solutions.

Error:

Cause: The backup directory is incomplete or corrupted, or the file was not extracted properly.

Resolution:

Re-verify that the backup files were copied completely.
Use tar -tzf to inspect archive contents before extracting.
Make sure you’re restoring on the same ClickHouse version that created the backup.

Error:

Cause: The container cannot access the /backups/ directory due to permissions.

Resolution:

Ensure the backup directory is readable by the ClickHouse process.

Restore a Single Table

clickhouse-client --query="RESTORE TABLE default.events FROM

Disk('/backups/backup_2025_06_09')"

Restore Specific Schemas or Data

clickhouse-client --query="SELECT * FROM default.events FORMAT CSV" > events.csv

clickhouse-client --query="INSERT INTO default.events FORMAT CSV" < events.csv

Common Errors & How to Fix Them

1. ClickHouse Fails to Start After Restore

DB::Exception: Corrupted data part ...

2. RESTORE Command Fails with Permission Denied

DB::Exception: Cannot read from backup: Permission denied

Use chmod -R 755 /opt/app/backups/ to adjust permissions if needed.

Cause: The RESTORE command did not include the correct database/table name or no data
existed in the backup path.

Resolution:

Use clickhouse-client --query="SHOW DATABASES" to confirm no restore happened.
Run ls /backups/backup_2025_06_09/ inside the container to verify backup contents.

Error:

Resolution:

Ensure your terminal session or script has write access to the target directory. Use sudo if needed:

3. Data Not Restored

4. Permission Denied When Copying Files

cp: cannot create regular file ‘/opt/app/data/’: Permission denied

sudo cp -r ./clickhouse_backup_2025_06_09 /opt/app/data/

Slow queries can impact ClickHouse performance, especially under high load or with inefficient
queries or schema design. Whether you’re using ClickHouse on Elestio via the dashboard,
accessing it inside a Docker Compose container, or running CLI queries, ClickHouse offers built-in
tools to detect, diagnose, and optimize performance bottlenecks. This guide explains how to
capture slow queries using system tables, measure query latency, and improve performance
through tuning and query optimization.

ClickHouse logs query profiling information by default, which you can access via system tables.
This allows you to identify long-running or resource-intensive queries directly from SQL.

Use the ClickHouse client to connect to your instance:

Replace <host>, <port>, <username>, and <password> with your credentials from the Elestio
dashboard.

ClickHouse logs query performance stats in the system.query_log table. To view the 10 most recent
queries that took longer than 1 second:

Identifying Slow Queries

Inspecting Slow Queries from the Terminal

Connect to ClickHouse via Terminal

clickhouse-client -h <host> --port <port> --user <username> --password <password>

View Recent Slow Queries

SELECT

 query_start_time,

 query_duration_ms,

https://docs.elest.io/uploads/images/gallery/2025-06/V4Ximage.png

You can adjust the query_duration_ms threshold to capture slower or more critical queries.

If your ClickHouse instance is running inside Docker Compose, you can inspect query logs and
system performance from inside the container.

Open a shell session inside the running container:

Then run the ClickHouse client:

If a password is required, append --password <yourpassword> to the command.

Run the same slow query inspection SQL as above to analyze performance issues:

ClickHouse includes system tables that expose performance-related metrics in real time.

 query

FROM system.query_log

WHERE type = 'QueryFinish'

 AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Analyzing Inside Docker Compose

Access the ClickHouse Container

docker-compose exec clickhouse bash

clickhouse-client --user root

Query the system.query_log Inside the Container

SELECT query_start_time, query_duration_ms, query

FROM system.query_log

WHERE type = 'QueryFinish' AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Using the System Metrics & Events Tables

Check Overall Query Performance

You can use the system.metrics table to view metrics like query execution time, memory usage,
and background operations:

For cumulative statistics like total queries processed, check the system.events table:

Slow performance in ClickHouse is often caused by suboptimal queries, improper indexing (i.e., no
primary key usage), disk I/O, or high memory usage.

Large table scans: Caused by missing filtering conditions or lack of primary key usage.
JOINs on unindexed keys: Inefficient joins can result in full-table scans.
High cardinality aggregations: Especially costly without optimization (e.g., using
uniqExact()).
High insert latency: Triggered by too frequent small batch writes.
Disk bottlenecks: Heavy merges or large result sets can overload I/O.

Use appropriate filtering: Always filter with indexed columns (usually primary keys).
Avoid SELECT *: Specify only the needed columns.
Use sampling when possible: ClickHouse supports SAMPLE clause on MergeTree
tables.
Use LIMIT: Avoid returning large result sets when debugging.
Optimize JOINs: Prefer ANY INNER JOIN or JOIN ... USING for performance.

SELECT *

FROM system.metrics

WHERE value != 0

ORDER BY value DESC;

SELECT *

FROM system.events

WHERE value > 0

ORDER BY value DESC;

Understanding and Resolving Common
Bottlenecks

Common Causes of Slow Queries:

Best Practices to Avoid Slow Queries:

Optimizing with Configuration Changes

ClickHouse performance can be tuned via its configuration files (config.xml and users.xml) or
environment variables. For Docker Compose setups, these can be overridden via docker-
compose.override.yml.

Some performance-related settings can be changed per session or globally:

To make permanent changes, modify your config.xml or users.xml inside the container volume
mount.

Adjust Query and Memory Settings Dynamically

SET max_memory_usage = 2000000000;

SET max_threads = 4;

SET log_queries = 1;

ClickHouse is a high-performance, column-oriented OLAP database, but poorly optimized or long-
running queries can still impact performance especially in resource-constrained environments like
Elestio. Because ClickHouse executes large queries across multiple threads and can consume high
memory and disk I/O, monitoring and controlling slow or blocking operations is essential.

This guide explains how to detect, analyze, and terminate long-running queries using terminal
tools, Docker Compose setups, and ClickHouse’s internal system tables. It also outlines
prevention strategies to help maintain system health.

ClickHouse exposes query execution data through system tables like system.processes and
system.query_log. These allow you to monitor currently executing and historical queries for
duration, memory usage, and user activity.

To list currently running queries and their duration:

elapsed is the query runtime in seconds.
memory_usage is in bytes.
This lets you pinpoint queries that are taking too long or consuming excessive memory.

ClickHouse doesn’t have a MONITOR-like command, but you can simulate real-time monitoring by
repeatedly querying system.processes:

Detect and terminate long-
running queries

Monitoring Long-Running Queries

Check Active Queries via Terminal

SELECT

 query_id,

 user,

 elapsed,

 memory_usage,

 query

FROM system.processes

ORDER BY elapsed DESC;

Monitor Query Load in Real Time

This updates every 2 seconds and shows the top 5 longest-running queries.

If you identify a query that is consuming too many resources or blocking critical workloads, you can
terminate it by its query_id.

The <id> can be found in the system.processes table.
This forces termination of the query while leaving the user session intact.

To forcibly kill all long-running queries (e.g., >60 seconds):

If ClickHouse is running inside Docker Compose on Elestio, follow these steps:

Then run:

If authentication is enabled, add --password <your_password>.

You can now run queries like:

Or terminate:

watch -n 2 'clickhouse-client --query="SELECT elapsed, query FROM system.processes ORDER BY

elapsed DESC LIMIT 5"'

Terminating Problematic Queries Safely

Kill a Query by ID

KILL QUERY WHERE query_id = '<id>';

KILL QUERY WHERE elapsed > 60 SYNC;

Use SYNC to wait for the termination to complete before proceeding.“

Managing Inside Docker Compose

Access the ClickHouse Container

docker-compose exec clickhouse bash

clickhouse-client --user default

SELECT query_id, elapsed, query FROM system.processes;

ClickHouse logs completed queries (including failures) in the system.query_log table.

This helps identify patterns or repeat offenders.

ClickHouse provides advanced metrics via system.metrics, system.events, and
system.asynchronous_metrics.

Use to analyze memory pressure, merge operations, disk reads/writes, and thread usage.

To examine detailed breakdowns of CPU usage or IO latency:

KILL QUERY WHERE query_id = '<id>';

Analyzing Query History

View Historical Long-Running Queries

SELECT

 query_start_time,

 query_duration_ms,

 user,

 query

FROM system.query_log

WHERE type = 'QueryFinish'

 AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Understanding Query Latency with Profiling
Tools

Generate a Performance Snapshot

SELECT * FROM system.metrics WHERE value != 0 ORDER BY value DESC;

SELECT * FROM system.events WHERE value > 0 ORDER BY value DESC;

Best Practices to Prevent Long-Running
Queries

Preventing long-running queries is vital for maintaining ClickHouse performance, especially under
high concurrency or on shared infrastructure.

Avoid Full Table Scans: Use filters on primary key or indexed columns. Avoid queries
without WHERE clauses on large tables.

Limit Result Set Sizes: Avoid returning millions of rows to clients. Use LIMIT and
paginated access.

Optimize Joins and Aggregations: Use ANY INNER JOIN for faster lookups. Avoid joining
two huge datasets unless one is pre-aggregated or dimensionally small.
Avoid High Cardinality Aggregates: Functions like uniqExact() are CPU-intensive.
Prefer approximate variants (uniq()) when precision isn’t critical.
Set Query Timeouts and Memory Limits: Limit resource usage per query:

Use Partitions and Projections: Partition large datasets by time (e.g., toYYYYMM(date))
to reduce scanned rows. Use projections for fast pre-aggregated access.

SELECT count() FROM logs WHERE date >= '2024-01-01';

SELECT * FROM logs ORDER BY timestamp DESC LIMIT 100;

SET max_execution_time = 30;

SET max_memory_usage = 1000000000;

Running out of disk space in a ClickHouse environment can cause query failures, part merge errors,
and even full service downtime. ClickHouse is highly dependent on disk for storing columnar data,
part files, metadata, temporary sort buffers, and backups. On platforms like Elestio, infrastructure
is managed, but users are still responsible for monitoring storage, managing data retention, and
optimizing resource usage. This guide explains how to monitor and clean up disk usage, configure
safe retention policies, and implement long-term strategies to prevent full disk scenarios in
ClickHouse when running under Docker Compose

Run this on the host machine to check which mount point is filling up:

This shows usage across all mounted volumes. Look for the mount used by your ClickHouse
volume—usually mapped to something like /var/lib/docker/volumes/clickhouse_data/_data.

Enter the ClickHouse container shell:

Inside, check total ClickHouse disk usage:

To inspect usage of specific folders like data/, tmp/, or store/:

Preventing Full Disk Issues

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec clickhouse bash

du -sh /var/lib/clickhouse

ls -lh /var/lib/clickhouse

Configuring Alerts and Cleaning Up
Storage

On the host, check space used by containers, images, volumes:

List all Docker volumes:

Remove unused volumes (only if you’re sure they’re not needed):

To free space by removing outdated partitions or tables:

If you’re storing backups under /var/lib/clickhouse/backup, list and delete old ones:

Ensure important backups are offloaded before removing.

Check the temp directory inside the container:

Inspect Docker’s storage usage

docker system df

Identify and remove unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Warning: Never delete your active ClickHouse data volume unless you’ve
backed it up.“

Drop data manually using SQL

ALTER TABLE logs DROP PARTITION '2024-01';

TRUNCATE TABLE temp_events;

Clean up local backups

ls -lh /var/lib/clickhouse/backup

rm -rf /var/lib/clickhouse/backup/backup-<timestamp>

Managing Temporary Files

Monitor temporary file usage

du -sh /var/lib/clickhouse/tmp

Old files may remain if queries or merges crashed. Clean up when the system is idle.

Modify the tmp_path in config.xml to use a volume-backed directory:

Restart the container after applying changes.

Avoid storing binary blobs: Do not store large files like PDFs or images in ClickHouse.
Use external object storage and only store references.
Use TTL to expire old data: Automatically delete old data based on timestamps:

Drop old partitions regularly: If partitioned by month/day, remove outdated partitions:

Enable efficient compression: Use ZSTD for better compression and lower disk usage:

Split large inserts into smaller batches: Avoid memory and disk spikes during large
ingest operations.
Optimize background merge load: Tune merge concurrency and thresholds using:

Limit disk spill during queries: Prevent massive temp usage during large operations:

Rotate Docker logs: Prevent logs from filling up your disk using log rotation:

Redirect temporary paths to persistent storage

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

Best Practices for Disk Space Management

ALTER TABLE logs MODIFY TTL created_at + INTERVAL 90 DAY;

ALTER TABLE logs DROP PARTITION '2023-12';

CREATE TABLE logs (...) ENGINE = MergeTree() SETTINGS compression = 'ZSTD';

<background_pool_size>8</background_pool_size>

<max_bytes_before_external_sort>500000000</max_bytes_before_external_sort>

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

Monitor disk usage from ClickHouse itself: Track table-level disk usage using system
tables:

Offload backups to remote storage: Backups inside containers should be copied off-
host. Use Elestio’s backup tool or mount a backup volume:

SELECT table, sum(bytes_on_disk) AS size FROM system.parts GROUP BY table ORDER BY size DESC;

volumes:

 - /mnt/backups:/backups

As your ClickHouse data grows especially with large analytical workloads or high-ingestion
pipelines it’s important to track how storage is being used. Unchecked growth can lead to full disks,
failed inserts, increased merge times, and slower queries. While Elestio handles the infrastructure,
ClickHouse storage optimization and cleanup remain your responsibility. This guide explains how to
inspect disk usage, analyze table size, detect inefficiencies, and manage ClickHouse storage
effectively under a Docker Compose setup.

ClickHouse stores data in columnar parts on disk, organized by partitions and merges. You can
inspect disk consumption using SQL queries and Docker commands.

From the host machine:

Identify the Docker volume associated with ClickHouse, then check disk usage:

Connect to ClickHouse from the container:

Run:

Checking Database Size and
Related Issues

Checking Table Size and Disk Usage

Check total disk space used by ClickHouse

docker system df

docker volume ls

sudo du -sh /var/lib/docker/volumes/<clickhouse_volume_name>/_data

Inspect space used per table

docker-compose exec clickhouse clickhouse-client

SELECT

 database,

 table,

 formatReadableSize(sum(bytes_on_disk)) AS size_on_disk

FROM system.parts

This shows total size used by each active table on disk.

ClickHouse typically writes data under /var/lib/clickhouse:

This contains all table parts and metadata. Review sizes and delete orphaned data if needed.

ClickHouse can accumulate unnecessary disk usage due to unoptimized merges, redundant
partitions, or abandoned tables.

A high number of unmerged parts can slow down queries and increase disk usage:

Tables with many small parts may need a manual merge trigger.

Look for inactive parts still occupying disk:

WHERE active

GROUP BY database, table

ORDER BY sum(bytes_on_disk) DESC;

View storage location inside container

docker-compose exec clickhouse ls -lh /var/lib/clickhouse/store

Detecting Bloat and Inefficiencies

Check for unmerged parts

SELECT

 database,

 table,

 count() AS part_count

FROM system.parts

WHERE active

GROUP BY database, table

ORDER BY part_count DESC;

Detect inactive or outdated parts

SELECT

 name,

 active,

 remove_time

FROM system.parts

These parts are safe to delete if they’re old and not part of ongoing operations.

To pinpoint heavy partitions:

Large partitions can indicate hot data or poor partitioning strategy.

ClickHouse provides several tools to optimize disk usage and clear unnecessary files.

For time-series or event tables, drop outdated partitions:

Use partition pruning to maintain data freshness.

To reduce part count and improve compression:

Use FINAL sparingly it can be resource-intensive.

WHERE active = 0

LIMIT 50;

Analyze storage by partition

SELECT

 table,

 partition_id,

 formatReadableSize(sum(bytes_on_disk)) AS size

FROM system.parts

WHERE active

GROUP BY table, partition_id

ORDER BY sum(bytes_on_disk) DESC;

Optimizing and Reclaiming ClickHouse
Storage

Drop old partitions manually

ALTER TABLE logs DROP PARTITION '2023-12';

Optimize tables to force merges

OPTIMIZE TABLE logs FINAL;

Clean up old tables or unused databases

Drop stale or abandoned tables:

Drop entire databases if needed:

Always ensure no production data is affected.

ClickHouse stores metadata, parts, WAL logs, and temp files under /var/lib/clickhouse. You should
monitor this path inside the container and from the host.

To drill down:

Identify unexpectedly large directories like /store, /tmp, or /data.

ClickHouse writes to /var/lib/clickhouse/tmp and /var/log/clickhouse-server/:

Clear if disk is nearing full. Rotate or truncate logs if necessary.

If mutations or insert queues are stuck:

Investigate and resolve the root cause. Consider restarting ClickHouse after clearing safe logs.

DROP TABLE old_analytics;

DROP DATABASE dev_test;

Managing and Optimizing Files on Disk

Monitor disk from inside container

docker-compose exec clickhouse du -sh /var/lib/clickhouse

docker-compose exec clickhouse du -sh /var/lib/clickhouse/*

Purge temporary files and logs

docker-compose exec clickhouse du -sh /var/lib/clickhouse/tmp

docker-compose exec clickhouse du -sh /var/log/clickhouse-server/

Clean WALs and outdated mutations

SELECT * FROM system.mutations WHERE is_done = 0;

Use partitioning: Partition large tables by time (e.g., daily, monthly) to enable faster drops
and better merge control.
Archive old data: Move cold data to object storage (S3, etc.) or external databases for
long-term storage.
Avoid oversized inserts: Insert in smaller chunks to avoid bloating parts and reduce
memory pressure during merges.
Rotate logs: If ClickHouse logs to file, configure log rotation:

Use ZSTD compression: Prefer ZSTD over LZ4 for better compression ratio at the cost of
slightly higher CPU.
Monitor merges and disk pressure: Use system.metrics and system.events to track merge
performance, part counts, and disk usage trends.
Backup externally: Don’t store backups on the same disk. Use Elestio backup options to
archive to remote or cloud storage.

Best Practices for ClickHouse Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

