
Overview
How to Connect

Connecting with ClickHouse GUI

How-To Guides

Creating a Database
Upgrading to Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

Database Migration

Cloning a Service to Another Provider or Region
Database Migration Services for ClickHouse
Manual ClickHouse Migration Using clickhouse-backup

Cluster Management

Overview
Deploying a New Cluster
Node Management
Adding a Node
Promoting a Node
Removing a Node
Backups and Restores

ClickHouse

Cluster Resynchronization
Database Migration
Delete a Cluster
Restricting Access by IP

ClickHouse is an open-source columnar database management system designed for online
analytical processing (OLAP). It enables fast processing of large volumes of data by storing data by
columns instead of rows, making it highly efficient for analytical queries. ClickHouse excels at real-
time analytics, complex aggregations, and high-throughput data ingestion, making it suitable for
data warehousing and business intelligence applications.

Key Features of ClickHouse:

High Performance for OLAP: Designed specifically for analytical workloads, ClickHouse
delivers lightning-fast query performance on large datasets by utilizing vectorized query
execution and data compression techniques.
Columnar Storage: Stores data by columns rather than rows, reducing I/O operations
and improving the efficiency of aggregation and filtering operations common in analytics
workloads.
Scalability and Distributed Processing: Supports horizontal scaling across multiple
nodes with sharding and replication, enabling the system to handle petabytes of data
while maintaining high availability and fault tolerance.
Real-Time Data Ingestion and Querying: Capable of ingesting millions of rows per
second and running complex queries with low latency, making it ideal for real-time
dashboards and monitoring systems.
SQL Support: Provides a rich SQL dialect with extensions for analytical use cases,
including window functions, subqueries, joins, arrays, and nested data structures, allowing
for expressive and powerful queries.
Data Compression: Implements advanced compression algorithms (LZ4, ZSTD, etc.),
significantly reducing disk usage and improving query performance by minimizing disk
reads.
Fault Tolerance and Replication: Ensures data reliability through built-in replication
and automatic failover mechanisms. Data can be replicated across nodes to prevent loss
and allow for uninterrupted service.
Extensibility: Allows users to extend functionality with user-defined functions, external
dictionaries, and integrations with external systems (e.g., Kafka, S3, HDFS).
Security and Access Control: Includes role-based access control, user authentication,
and TLS encryption to secure data access and communication.
Cross-Platform Support: ClickHouse runs on major operating systems, including Linux,
macOS, and FreeBSD, offering flexibility for various infrastructure environments.

These features make ClickHouse a preferred choice for organisations that require real-time
analytics at scale, combining high performance, fault tolerance, and rich SQL support in a modern
columnar database system.

Overview

How to Connect

How to Connect

Tabix is a lightweight browser-based GUI for ClickHouse that lets you browse tables, write queries,
and manage your ClickHouse instance using a preconfigured admin dashboard provided by Elestio.

To connect using Tabix, you’ll need the following login credentials. When you deploy a ClickHouse
service on Elestio, a Tabix dashboard is automatically created and configured for you. These
credentials are available in the Elestio service overview page:

Variable Description Purpose

USER Tabix login username Identifies the user with access
permission to Tabix GUI.

PASSWORD Tabix login password Authentication key for the USER to
access the Tabix dashboard.

You can find these values in your Elestio project dashboard under the Admin section.

Make sure the ClickHouse service is correctly deployed on Elestio and you are able to access the
Admin section of the service overview page, which includes the Tabix dashboard URL and login
credentials.

1. Launch Tabix from the Admin UI URL shown in your Elestio service.
2. Enter the provided username and password.

Connecting with ClickHouse GUI

Variables

Prerequisites

Setting Up the Connection

https://docs.elest.io/uploads/images/gallery/2025-06/lA0image.png

3. Click Login.

If the login is successful, Tabix will open directly into the SQL query interface where you can run
queries, browse tables, and manage your ClickHouse schema and data.

https://docs.elest.io/uploads/images/gallery/2025-06/eFsimage.png
https://docs.elest.io/uploads/images/gallery/2025-06/TT0image.png

How-To Guides

How-To Guides

ClickHouse is a high-performance columnar database designed for real-time analytical processing.
It’s known for its blazing speed, horizontal scalability, and efficient use of disk I/O. Proper setup is
essential for taking advantage of ClickHouse’s full capabilities, including fault tolerance, secure
access, and high query performance. This guide walks through various ways to run and connect to
ClickHouse: using the ClickHouse CLI (clickhouse-client), Docker containers, and command-line
tools for scripting and automation. Best practices are highlighted throughout to ensure robust
deployments.

The ClickHouse command-line interface (clickhouse-client) is a built-in tool used to connect to and
manage ClickHouse servers. It supports both local and remote connections and allows for SQL-
based interaction with the database engine.

If you’re running ClickHouse locally (via package manager or Docker), you can start the CLI with:

For remote connections, specify the hostname, port (default 9000), and user credentials:

Once connected, you can run SQL queries directly from the shell.

Docker provides a fast, reproducible way to run ClickHouse in isolated environments. This is ideal
for local development or self-contained production setups.

If you’re using Elestio for ClickHouse hosting, log into the Elestio dashboard. Go to your ClickHouse
service, then navigate to Tools > Terminal to open a pre-authenticated shell session.

Creating a Database

Creating using clickhouse-client

Connect to ClickHouse:

clickhouse-client

clickhouse-client -h <host> --port <port> -u <username> --password

Running ClickHouse Using Docker

Access Elestio Terminal

Now change the directory:

Elestio-managed services run on Docker Compose. Use this to enter the ClickHouse container:

Once inside the container, the clickhouse-client tool is available. Run it like this (add --password if
needed):

You are now connected to the running ClickHouse instance inside the container.

cd /opt/app/

Access the ClickHouse Container Shell

docker-compose exec clickhouse bash

Access ClickHouse CLI from Inside the Container

clickhouse-client -u <user> --port <port> --password

Test Connectivity

https://docs.elest.io/uploads/images/gallery/2025-06/Cntimage.png

Try creating a database and querying data to verify functionality:

Expected Output:

This confirms read/write operations and query functionality.

clickhouse-client can be used non-interactively for scripting, automation, and cron-based jobs.

For example, to insert data from a shell script:

This is useful for automated ETL jobs, health checks, or backup pipelines.

Adopt consistent naming conventions for databases, tables, and columns. Use lowercase,
underscore-separated names like:

This improves clarity in multi-schema environments and helps with automation and maintenance
scripts.

CREATE DATABASE test_db;

CREATE TABLE test_db.test_table (id UInt32, message String) ENGINE = MergeTree() ORDER BY id;

INSERT INTO test_db.test_table VALUES (1, 'Hello ClickHouse');

SELECT * FROM test_db.test_table;

1	Hello ClickHouse

Connecting Using clickhouse-client in
Scripts

echo "INSERT INTO test_db.test_table VALUES (2, 'Automated')" | \

clickhouse-client -h <host> -u <user> --password

Best Practices for Setting Up
ClickHouse
Use Clear Naming for Databases and Tables

user_events_2024

product_sales_agg

Choose the Right Engine and Indexing Strategy

ClickHouse supports various table engines like MergeTree, ReplacingMergeTree, and
SummingMergeTree. Pick the engine that best matches your use case and define ORDER BY keys
carefully to optimize performance.

Example:

Inappropriate engine selection can lead to poor query performance or high disk usage.

Always configure user-level authentication and restrict access in production. Add users and
passwords in users.xml or via SQL:

Use TLS for encrypted connections by enabling SSL in the config.xml file:

ClickHouse stores data on disk by default, but ensure proper mounting, storage separation, and
backup routines.

In config.xml:

CREATE TABLE logs (

 timestamp DateTime,

 service String,

 message String

) ENGINE = MergeTree()

ORDER BY (timestamp, service);

Enable Authentication and Secure Access

CREATE USER secure_user IDENTIFIED WITH plaintext_password BY 'strong_password';

GRANT ALL ON *.* TO secure_user;

<tcp_port_secure>9440</tcp_port_secure>

<openSSL>

 <server>

 <certificateFile>/etc/clickhouse-server/certs/server.crt</certificateFile>

 <privateKeyFile>/etc/clickhouse-server/certs/server.key</privateKeyFile>

 </server>

</openSSL>

Configure Data Persistence and Storage Paths

<path>/var/lib/clickhouse/</path>

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

<user_files_path>/var/lib/clickhouse/user_files/</user_files_path>

Use RAID, SSDs, or networked volumes depending on your availability and performance needs.

Use built-in introspection tools like:

For real-time observability, integrate with Grafana, Prometheus, or use ClickHouse Keeper metrics.

Also review:

system.mutations for long-running mutation jobs
system.errors for crash/debug info
system.replication_queue for sync issues in replicated tables

Issue Cause Solution

Authentication failure Wrong password or no user set Double-check credentials; use --
password flag

Cannot connect to localhost Service not running or incorrect port Ensure ClickHouse is running and
check the port

SSL/TLS handshake failed Incorrect certificate paths or
permissions

Verify file locations in config.xml and
restart service

Queries are slow Poor ORDER BY design or unoptimized
table engine

Reevaluate schema design and use
indexes effectively

Data lost after restart Misconfigured data path or ephemeral
container

Ensure proper disk volume mounts
and storage persistence

Monitor and Tune Performance

SELECT * FROM system.metrics;

SELECT * FROM system.query_log ORDER BY event_time DESC LIMIT 10;

SELECT * FROM system.parts;

Common Issues and Their Solutions

https://clickhouse.com/docs/en/operations/monitoring/metrics/

How-To Guides

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-10-38-am.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-12-02-am.jpg

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background.

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-11-at-11-12-50-am.jpg

How-To Guides

ClickHouse supports custom extensions via [User Defined Functions (UDFs)], external
dictionaries, and shared libraries that extend its core capabilities with custom logic, formats, or
integrations. These behave similarly to modules or plugins in other systems and must be
configured at server startup. Common examples include integration with geospatial libraries,
custom UDFs, or external dictionary sources like MySQL or HTTP.

In Elestio-hosted ClickHouse instances or any Docker Compose-based setup, extensions can be
added by mounting external libraries or configuration files and referencing them in config.xml or
users.xml. This guide walks through how to install, load, and manage ClickHouse extensions using
Docker Compose along with best practices and common troubleshooting steps.

ClickHouse extensions are typically compiled as shared objects (.so) files or defined as
configuration files for dictionaries or formats. These files must be mounted into the container and
referenced explicitly in the server’s configuration files.

Suppose you have a compiled UDF called libexample_udf.so. To include it in a Docker Compose
setup:

Mount the shared library into the container:

Installing and Updating an
Extension

Installing and Enabling ClickHouse
Extensions

Example: Load Custom Shared Library UDF

Update docker-compose.yml

services:

 clickhouse:

 image: clickhouse/clickhouse-server:latest

 volumes:

 - ./modules/libexample_udf.so:/usr/lib/clickhouse/user_defined/libexample_udf.so

 - ./configs/config.xml:/etc/clickhouse-server/config.xml

./modules/libexample_udf.so: local path to the shared library on the host.
/usr/lib/clickhouse/user_defined/: default directory for user libraries inside the container.

Make sure the file exists before running Docker Compose.

In your custom config.xml:

After updating the Compose and configuration files, restart the service:

This will reload ClickHouse with the specified UDF.

Connect using the ClickHouse CLI or HTTP interface and run:

If successful, the function will return expected results from the loaded library. You can also confirm
the server loaded your shared library by inspecting logs:

 ports:

 - "8123:8123"

 - "9000:9000"

Configure config.xml to Load the UDF

<user_defined>

 <function>

 <name>example_udf</name>

 <type>udf</type>

 <library>libexample_udf.so</library>

 </function>

</user_defined>

The library path must match the volume mount location.“
Restart the ClickHouse Service

docker-compose down

docker-compose up -d

Verify the Extension is Loaded

SELECT example_udf('test input');

docker-compose logs clickhouse

Look for lines that indicate the library was found and loaded.

ClickHouse supports loading external data sources (like MySQL, HTTP APIs, or files) as dictionaries

In docker-compose.yml:

Example dictionary file (mysql_dictionary.xml):

Use the dictionary in queries:

Managing External Dictionaries

Mount Dictionary Configuration

volumes:

 - ./configs/dictionaries/:/etc/clickhouse-server/dictionaries/

Reference in config.xml

<dictionaries_config>/etc/clickhouse-server/dictionaries/*.xml</dictionaries_config>

<dictionary>

 <name>mysql_dict</name>

 <source>

 <mysql>

 <host>mysql-host</host>

 <user>root</user>

 <password>password</password>

 <db>test</db>

 <table>cities</table>

 </mysql>

 </source>

 <layout><flat /></layout>

 <structure>

 <id>id</id>

 <attribute>

 <name>name</name>

 <type>String</type>

 </attribute>

 </structure>

</dictionary>

ClickHouse doesn’t support unloading UDFs or dictionaries at runtime. To modify or remove an
extension:

1. Stop the container:

2. Edit config files:

Replace or remove the <function> entry in config.xml or dictionary config.
Replace or remove the .so file if applicable.

3. Restart the container:

Issue Cause Resolution

ClickHouse fails to start Invalid config or missing .so file Run docker-compose logs clickhouse
and fix missing files or XML syntax

UDF not recognized Wrong library path or missing
permissions

Ensure volume mount is correct and
file is executable inside container

Dictionary not available Config file not found or misconfigured
XML

Double-check dictionaries_config and
validate with SHOW DICTIONARIES

Segmentation fault Invalid shared library or ABI mismatch Recompile UDF for correct platform,
verify against installed ClickHouse
version

Query fails silently Dictionary or UDF not fully loaded Recheck server logs for errors during
startup

SELECT dictGetString('mysql_dict', 'name', toUInt64(42));

Updating or Removing Extensions

docker-compose down

docker-compose up -d

Always test changes in staging before deploying to production.“

Troubleshooting Common Extension
Issues

ClickHouse extensions especially shared libraries run with the same privileges as the ClickHouse
server. Be cautious:

Only load trusted .so files from verified sources.
Ensure clickhouse user has restricted permissions inside the container.
Never expose dictionary or UDF paths to writable directories from external systems.

Avoid using custom UDFs or dictionaries from unknown sources in production environments without
a thorough code review.

Security Considerations

How-To Guides

Regular backups are essential when running a ClickHouse deployment, especially if you’re using it
for persistent analytics or time-series data. While Elestio handles automated backups by default,
you may want to create manual backups before configuration changes, retain a local archive, or
test backup automation. This guide walks through multiple methods for creating ClickHouse
backups on Elestio, including dashboard snapshots, command-line approaches, and Docker
Compose-based setups. It also explains backup storage, retention, and automation using scheduled
jobs.

If you’re using Elestio’s managed ClickHouse service, the simplest way to perform a full backup is
directly through the Elestio dashboard. This creates a snapshot of your current ClickHouse dataset
and stores it in Elestio’s infrastructure. These snapshots can be restored later from the same
interface, which is helpful when making critical changes or testing recovery workflows.

To trigger a manual ClickHouse backup on Elestio:

Log in to the Elestio dashboard.
Navigate to your ClickHouse service or cluster.
Click the Backups tab in the service menu.
Choose Back up now to generate a manual snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

https://docs.elest.io/uploads/images/gallery/2025-06/xU6screenshot-2025-06-11-at-11-10-38-am.jpg

This method is recommended for quick, reliable backups without needing to use the command line.

If your ClickHouse instance is deployed via Docker Compose (as is common on Elestio-hosted
environments), you can manually back up ClickHouse by either copying its internal storage files or
using the native BACKUP SQL command (available in ClickHouse v21.12+). These approaches allow
you to maintain control over backup logic and frequency.

Go to your deployed ClickHouse service in the Elestio dashboard, navigate to Tools > Terminal,
and log in using the credentials provided.

Navigate to your app directory:

This is the working directory of your Docker Compose project, which contains the docker-
compose.yml file.

If you’re using ClickHouse with backup support enabled, you can execute:

This creates a full backup of the default database inside the container at /backups.

Use docker cp to move the backup directory to your host system:

This gives you a restorable backup snapshot for storage or future recovery.

Manual Backups Using Docker
Compose

Access Elestio Terminal

Locate the ClickHouse Container Directory

cd /opt/app/

Trigger a Backup (Using SQL)

docker-compose exec clickhouse clickhouse-client --query="BACKUP DATABASE default TO

Disk('/backups/backup_$(date +%F)')"

Copy Backup Files from the Container

docker cp $(docker-compose ps -q clickhouse):/backups/backup_$(date +%F)

./clickhouse_backup_$(date +%F)

After creating backups, it’s important to store them securely and manage retention properly.
ClickHouse backups can grow large depending on the volume and compression of your data.

Use clear naming: clickhouse_backup_2025_06_09
Store off-site or on cloud storage (e.g. AWS S3, Backblaze, encrypted storage)
Retain: 7 daily backups, 4 weekly backups, and 3–6 monthly backups
Automate old file cleanup with cron jobs or retention scripts
Optionally compress backups with tar, gzip, or xz to reduce space

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Edit the crontab:

Add a job like:

Make sure /backups/ exists and is writable by the cron user.

You can also compress the file or upload to cloud storage in the same script:

Backup Storage & Retention Best
Practices

Guidelines to Follow:

Automating ClickHouse Backups
(cron)

Example: Daily Backup at 3 AM

crontab -e

0 3 * * * docker-compose -f /opt/app/docker-compose.yml exec clickhouse \

clickhouse-client --query="BACKUP DATABASE default TO Disk('/backups/backup_$(date +\%F)')" &&

\

docker cp $(docker-compose -f /opt/app/docker-compose.yml ps -q

clickhouse):/backups/backup_$(date +\%F) /backups/clickhouse_backup_$(date +\%F)

Format Description Restore Method

/backups/backup_<date> SQL-based backup using BACKUP
command

Use RESTORE DATABASE from the same Disk location

.tar.gz or .tar archive Filesystem snapshot of
/var/lib/clickhouse

Stop ClickHouse, extract data back into the directory,
then restart

Stop ClickHouse:

Restore via SQL:

Or restore from file-based archive:

tar -czf /backups/clickhouse_backup_$(date +\%F).tar.gz /backups/clickhouse_backup_$(date

+\%F)

rclone copy /backups/clickhouse_backup_$(date +\%F).tar.gz remote:clickhouse-backups

Backup Format and Restore Notes

To restore from a backup:

docker-compose down

docker-compose exec clickhouse clickhouse-client --query="RESTORE DATABASE default FROM

Disk('/backups/backup_2025-06-09')"

tar -xzf clickhouse_backup_2025-06-09.tar.gz -C /opt/app/data/clickhouse/

docker-compose up -d

How-To Guides

Restoring ClickHouse backups is essential for disaster recovery, staging environment duplication,
or rolling back to a known state. Elestio supports backup restoration both through its web
dashboard and manually through Docker Compose and command-line methods. This guide explains
how to restore ClickHouse backups from SQL-based snapshots or file-based archives, covering both
full and partial restore scenarios, and includes solutions for common restoration issues.

This method applies when you have a backup created using ClickHouse’s native BACKUP command
or a direct copy of the data directory. To restore the backup, you must stop the running ClickHouse
container, replace the data files, and restart the container to load the restored dataset.

Shut down the ClickHouse container cleanly to avoid issues with open file handles or inconsistent
state:

If your backup was created using the native ClickHouse BACKUP command and saved to
/backups/backup_2025_06_09, copy it into the appropriate path within the container or bind mount.

Example:

Make sure this path corresponds to the volumes specified in your docker-compose.yml. For
example:

Restoring a Backup

Restoring from a Backup via
Terminal

Stop the ClickHouse Container

docker-compose down

Replace the Backup Files

cp -r ./clickhouse_backup_2025_06_09 /opt/app/backups/backup_2025_06_09

volumes:

 - ./backups:/backups

 - ./data:/var/lib/clickhouse

If you’re restoring from a tarball archive, extract it into the correct volume mount:

Start the ClickHouse container again:

ClickHouse will load the data either from the standard data directory or, if using the backup
snapshot method, you can explicitly restore the database using SQL (next section).

If you’re using backups made with the SQL BACKUP command, ClickHouse also provides a built-in
method to restore via the RESTORE command.

Enter the container terminal:

Then run the restore command:

This will restore the default database and its contents from the previously created backup
directory.

tar -xzf clickhouse_backup_2025_06_09.tar.gz -C /opt/app/data/

Restart ClickHouse

docker-compose up -d

Restoring via Docker Compose
Terminal

Copy the Backup Directory into the Container

docker cp ./clickhouse_backup_2025_06_09 $(docker-compose ps -q

clickhouse):/backups/backup_2025_06_09

Restore with ClickHouse SQL

docker-compose exec clickhouse bash

clickhouse-client --query="RESTORE DATABASE default FROM Disk('/backups/backup_2025_06_09')"

Partial Restores in ClickHouse

ClickHouse supports more granular restore operations using SQL syntax. You can restore individual
tables or databases if the backup was created using the native BACKUP command.

This restores just the events table from the default database without affecting other tables.

You can also export and import CSV or TSV snapshots for partial data management:

Restoring ClickHouse data can occasionally fail due to permission issues, path mismatches,
unsupported formats, or version conflicts. Here are some frequent issues and their solutions.

Error:

Cause: The backup directory is incomplete or corrupted, or the file was not extracted properly.

Resolution:

Re-verify that the backup files were copied completely.
Use tar -tzf to inspect archive contents before extracting.
Make sure you’re restoring on the same ClickHouse version that created the backup.

Error:

Cause: The container cannot access the /backups/ directory due to permissions.

Restore a Single Table

clickhouse-client --query="RESTORE TABLE default.events FROM

Disk('/backups/backup_2025_06_09')"

Restore Specific Schemas or Data

clickhouse-client --query="SELECT * FROM default.events FORMAT CSV" > events.csv

clickhouse-client --query="INSERT INTO default.events FORMAT CSV" < events.csv

Common Errors & How to Fix Them

1. ClickHouse Fails to Start After Restore

DB::Exception: Corrupted data part ...

2. RESTORE Command Fails with Permission Denied

DB::Exception: Cannot read from backup: Permission denied

Resolution:

Ensure the backup directory is readable by the ClickHouse process.
Use chmod -R 755 /opt/app/backups/ to adjust permissions if needed.

Cause: The RESTORE command did not include the correct database/table name or no data
existed in the backup path.

Resolution:

Use clickhouse-client --query="SHOW DATABASES" to confirm no restore happened.
Run ls /backups/backup_2025_06_09/ inside the container to verify backup contents.

Error:

Resolution:

Ensure your terminal session or script has write access to the target directory. Use sudo if needed:

3. Data Not Restored

4. Permission Denied When Copying Files

cp: cannot create regular file ‘/opt/app/data/’: Permission denied

sudo cp -r ./clickhouse_backup_2025_06_09 /opt/app/data/

How-To Guides

Slow queries can impact ClickHouse performance, especially under high load or with inefficient
queries or schema design. Whether you’re using ClickHouse on Elestio via the dashboard,
accessing it inside a Docker Compose container, or running CLI queries, ClickHouse offers built-in
tools to detect, diagnose, and optimize performance bottlenecks. This guide explains how to
capture slow queries using system tables, measure query latency, and improve performance
through tuning and query optimization.

ClickHouse logs query profiling information by default, which you can access via system tables.
This allows you to identify long-running or resource-intensive queries directly from SQL.

Use the ClickHouse client to connect to your instance:

Replace <host>, <port>, <username>, and <password> with your credentials from the Elestio
dashboard.

ClickHouse logs query performance stats in the system.query_log table. To view the 10 most recent
queries that took longer than 1 second:

Identifying Slow Queries

Inspecting Slow Queries from the Terminal

Connect to ClickHouse via Terminal

clickhouse-client -h <host> --port <port> --user <username> --password <password>

View Recent Slow Queries

SELECT

 query_start_time,

https://docs.elest.io/uploads/images/gallery/2025-06/V4Ximage.png

You can adjust the query_duration_ms threshold to capture slower or more critical queries.

If your ClickHouse instance is running inside Docker Compose, you can inspect query logs and
system performance from inside the container.

Open a shell session inside the running container:

Then run the ClickHouse client:

If a password is required, append --password <yourpassword> to the command.

Run the same slow query inspection SQL as above to analyze performance issues:

ClickHouse includes system tables that expose performance-related metrics in real time.

 query_duration_ms,

 query

FROM system.query_log

WHERE type = 'QueryFinish'

 AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Analyzing Inside Docker Compose

Access the ClickHouse Container

docker-compose exec clickhouse bash

clickhouse-client --user root

Query the system.query_log Inside the Container

SELECT query_start_time, query_duration_ms, query

FROM system.query_log

WHERE type = 'QueryFinish' AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Using the System Metrics & Events Tables

Check Overall Query Performance

You can use the system.metrics table to view metrics like query execution time, memory usage,
and background operations:

For cumulative statistics like total queries processed, check the system.events table:

Slow performance in ClickHouse is often caused by suboptimal queries, improper indexing (i.e., no
primary key usage), disk I/O, or high memory usage.

Large table scans: Caused by missing filtering conditions or lack of primary key usage.
JOINs on unindexed keys: Inefficient joins can result in full-table scans.
High cardinality aggregations: Especially costly without optimization (e.g., using
uniqExact()).
High insert latency: Triggered by too frequent small batch writes.
Disk bottlenecks: Heavy merges or large result sets can overload I/O.

Use appropriate filtering: Always filter with indexed columns (usually primary keys).
Avoid SELECT *: Specify only the needed columns.
Use sampling when possible: ClickHouse supports SAMPLE clause on MergeTree
tables.
Use LIMIT: Avoid returning large result sets when debugging.
Optimize JOINs: Prefer ANY INNER JOIN or JOIN ... USING for performance.

SELECT *

FROM system.metrics

WHERE value != 0

ORDER BY value DESC;

SELECT *

FROM system.events

WHERE value > 0

ORDER BY value DESC;

Understanding and Resolving Common
Bottlenecks

Common Causes of Slow Queries:

Best Practices to Avoid Slow Queries:

Optimizing with Configuration Changes

ClickHouse performance can be tuned via its configuration files (config.xml and users.xml) or
environment variables. For Docker Compose setups, these can be overridden via docker-
compose.override.yml.

Some performance-related settings can be changed per session or globally:

To make permanent changes, modify your config.xml or users.xml inside the container volume
mount.

Adjust Query and Memory Settings Dynamically

SET max_memory_usage = 2000000000;

SET max_threads = 4;

SET log_queries = 1;

How-To Guides

ClickHouse is a high-performance, column-oriented OLAP database, but poorly optimized or long-
running queries can still impact performance especially in resource-constrained environments like
Elestio. Because ClickHouse executes large queries across multiple threads and can consume high
memory and disk I/O, monitoring and controlling slow or blocking operations is essential.

This guide explains how to detect, analyze, and terminate long-running queries using terminal
tools, Docker Compose setups, and ClickHouse’s internal system tables. It also outlines
prevention strategies to help maintain system health.

ClickHouse exposes query execution data through system tables like system.processes and
system.query_log. These allow you to monitor currently executing and historical queries for
duration, memory usage, and user activity.

To list currently running queries and their duration:

elapsed is the query runtime in seconds.
memory_usage is in bytes.
This lets you pinpoint queries that are taking too long or consuming excessive memory.

Detect and terminate long-
running queries

Monitoring Long-Running Queries

Check Active Queries via Terminal

SELECT

 query_id,

 user,

 elapsed,

 memory_usage,

 query

FROM system.processes

ORDER BY elapsed DESC;

Monitor Query Load in Real Time

ClickHouse doesn’t have a MONITOR-like command, but you can simulate real-time monitoring by
repeatedly querying system.processes:

This updates every 2 seconds and shows the top 5 longest-running queries.

If you identify a query that is consuming too many resources or blocking critical workloads, you can
terminate it by its query_id.

The <id> can be found in the system.processes table.
This forces termination of the query while leaving the user session intact.

To forcibly kill all long-running queries (e.g., >60 seconds):

If ClickHouse is running inside Docker Compose on Elestio, follow these steps:

Then run:

If authentication is enabled, add --password <your_password>.

You can now run queries like:

watch -n 2 'clickhouse-client --query="SELECT elapsed, query FROM system.processes ORDER BY

elapsed DESC LIMIT 5"'

Terminating Problematic Queries Safely

Kill a Query by ID

KILL QUERY WHERE query_id = '<id>';

KILL QUERY WHERE elapsed > 60 SYNC;

Use SYNC to wait for the termination to complete before proceeding.“

Managing Inside Docker Compose

Access the ClickHouse Container

docker-compose exec clickhouse bash

clickhouse-client --user default

Or terminate:

ClickHouse logs completed queries (including failures) in the system.query_log table.

This helps identify patterns or repeat offenders.

ClickHouse provides advanced metrics via system.metrics, system.events, and
system.asynchronous_metrics.

Use to analyze memory pressure, merge operations, disk reads/writes, and thread usage.

To examine detailed breakdowns of CPU usage or IO latency:

SELECT query_id, elapsed, query FROM system.processes;

KILL QUERY WHERE query_id = '<id>';

Analyzing Query History

View Historical Long-Running Queries

SELECT

 query_start_time,

 query_duration_ms,

 user,

 query

FROM system.query_log

WHERE type = 'QueryFinish'

 AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Understanding Query Latency with Profiling
Tools

Generate a Performance Snapshot

SELECT * FROM system.metrics WHERE value != 0 ORDER BY value DESC;

SELECT * FROM system.events WHERE value > 0 ORDER BY value DESC;

Preventing long-running queries is vital for maintaining ClickHouse performance, especially under
high concurrency or on shared infrastructure.

Avoid Full Table Scans: Use filters on primary key or indexed columns. Avoid queries
without WHERE clauses on large tables.

Limit Result Set Sizes: Avoid returning millions of rows to clients. Use LIMIT and
paginated access.

Optimize Joins and Aggregations: Use ANY INNER JOIN for faster lookups. Avoid joining
two huge datasets unless one is pre-aggregated or dimensionally small.
Avoid High Cardinality Aggregates: Functions like uniqExact() are CPU-intensive.
Prefer approximate variants (uniq()) when precision isn’t critical.
Set Query Timeouts and Memory Limits: Limit resource usage per query:

Use Partitions and Projections: Partition large datasets by time (e.g., toYYYYMM(date))
to reduce scanned rows. Use projections for fast pre-aggregated access.

Best Practices to Prevent Long-Running
Queries

SELECT count() FROM logs WHERE date >= '2024-01-01';

SELECT * FROM logs ORDER BY timestamp DESC LIMIT 100;

SET max_execution_time = 30;

SET max_memory_usage = 1000000000;

How-To Guides

Running out of disk space in a ClickHouse environment can cause query failures, part merge errors,
and even full service downtime. ClickHouse is highly dependent on disk for storing columnar data,
part files, metadata, temporary sort buffers, and backups. On platforms like Elestio, infrastructure
is managed, but users are still responsible for monitoring storage, managing data retention, and
optimizing resource usage. This guide explains how to monitor and clean up disk usage, configure
safe retention policies, and implement long-term strategies to prevent full disk scenarios in
ClickHouse when running under Docker Compose

Run this on the host machine to check which mount point is filling up:

This shows usage across all mounted volumes. Look for the mount used by your ClickHouse
volume—usually mapped to something like /var/lib/docker/volumes/clickhouse_data/_data.

Enter the ClickHouse container shell:

Inside, check total ClickHouse disk usage:

To inspect usage of specific folders like data/, tmp/, or store/:

Preventing Full Disk Issues

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec clickhouse bash

du -sh /var/lib/clickhouse

ls -lh /var/lib/clickhouse

Configuring Alerts and Cleaning Up
Storage

On the host, check space used by containers, images, volumes:

List all Docker volumes:

Remove unused volumes (only if you’re sure they’re not needed):

To free space by removing outdated partitions or tables:

If you’re storing backups under /var/lib/clickhouse/backup, list and delete old ones:

Ensure important backups are offloaded before removing.

Check the temp directory inside the container:

Inspect Docker’s storage usage

docker system df

Identify and remove unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Warning: Never delete your active ClickHouse data volume unless you’ve
backed it up.“

Drop data manually using SQL

ALTER TABLE logs DROP PARTITION '2024-01';

TRUNCATE TABLE temp_events;

Clean up local backups

ls -lh /var/lib/clickhouse/backup

rm -rf /var/lib/clickhouse/backup/backup-<timestamp>

Managing Temporary Files

Monitor temporary file usage

du -sh /var/lib/clickhouse/tmp

Old files may remain if queries or merges crashed. Clean up when the system is idle.

Modify the tmp_path in config.xml to use a volume-backed directory:

Restart the container after applying changes.

Avoid storing binary blobs: Do not store large files like PDFs or images in ClickHouse.
Use external object storage and only store references.
Use TTL to expire old data: Automatically delete old data based on timestamps:

Drop old partitions regularly: If partitioned by month/day, remove outdated partitions:

Enable efficient compression: Use ZSTD for better compression and lower disk usage:

Split large inserts into smaller batches: Avoid memory and disk spikes during large
ingest operations.
Optimize background merge load: Tune merge concurrency and thresholds using:

Limit disk spill during queries: Prevent massive temp usage during large operations:

Rotate Docker logs: Prevent logs from filling up your disk using log rotation:

Redirect temporary paths to persistent storage

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

Best Practices for Disk Space Management

ALTER TABLE logs MODIFY TTL created_at + INTERVAL 90 DAY;

ALTER TABLE logs DROP PARTITION '2023-12';

CREATE TABLE logs (...) ENGINE = MergeTree() SETTINGS compression = 'ZSTD';

<background_pool_size>8</background_pool_size>

<max_bytes_before_external_sort>500000000</max_bytes_before_external_sort>

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

Monitor disk usage from ClickHouse itself: Track table-level disk usage using system
tables:

Offload backups to remote storage: Backups inside containers should be copied off-
host. Use Elestio’s backup tool or mount a backup volume:

SELECT table, sum(bytes_on_disk) AS size FROM system.parts GROUP BY table ORDER BY size DESC;

volumes:

 - /mnt/backups:/backups

How-To Guides

As your ClickHouse data grows especially with large analytical workloads or high-ingestion
pipelines it’s important to track how storage is being used. Unchecked growth can lead to full disks,
failed inserts, increased merge times, and slower queries. While Elestio handles the infrastructure,
ClickHouse storage optimization and cleanup remain your responsibility. This guide explains how to
inspect disk usage, analyze table size, detect inefficiencies, and manage ClickHouse storage
effectively under a Docker Compose setup.

ClickHouse stores data in columnar parts on disk, organized by partitions and merges. You can
inspect disk consumption using SQL queries and Docker commands.

From the host machine:

Identify the Docker volume associated with ClickHouse, then check disk usage:

Connect to ClickHouse from the container:

Run:

Checking Database Size and
Related Issues

Checking Table Size and Disk Usage

Check total disk space used by ClickHouse

docker system df

docker volume ls

sudo du -sh /var/lib/docker/volumes/<clickhouse_volume_name>/_data

Inspect space used per table

docker-compose exec clickhouse clickhouse-client

SELECT

 database,

 table,

 formatReadableSize(sum(bytes_on_disk)) AS size_on_disk

This shows total size used by each active table on disk.

ClickHouse typically writes data under /var/lib/clickhouse:

This contains all table parts and metadata. Review sizes and delete orphaned data if needed.

ClickHouse can accumulate unnecessary disk usage due to unoptimized merges, redundant
partitions, or abandoned tables.

A high number of unmerged parts can slow down queries and increase disk usage:

Tables with many small parts may need a manual merge trigger.

Look for inactive parts still occupying disk:

FROM system.parts

WHERE active

GROUP BY database, table

ORDER BY sum(bytes_on_disk) DESC;

View storage location inside container

docker-compose exec clickhouse ls -lh /var/lib/clickhouse/store

Detecting Bloat and Inefficiencies

Check for unmerged parts

SELECT

 database,

 table,

 count() AS part_count

FROM system.parts

WHERE active

GROUP BY database, table

ORDER BY part_count DESC;

Detect inactive or outdated parts

SELECT

 name,

 active,

 remove_time

These parts are safe to delete if they’re old and not part of ongoing operations.

To pinpoint heavy partitions:

Large partitions can indicate hot data or poor partitioning strategy.

ClickHouse provides several tools to optimize disk usage and clear unnecessary files.

For time-series or event tables, drop outdated partitions:

Use partition pruning to maintain data freshness.

To reduce part count and improve compression:

Use FINAL sparingly it can be resource-intensive.

FROM system.parts

WHERE active = 0

LIMIT 50;

Analyze storage by partition

SELECT

 table,

 partition_id,

 formatReadableSize(sum(bytes_on_disk)) AS size

FROM system.parts

WHERE active

GROUP BY table, partition_id

ORDER BY sum(bytes_on_disk) DESC;

Optimizing and Reclaiming ClickHouse
Storage

Drop old partitions manually

ALTER TABLE logs DROP PARTITION '2023-12';

Optimize tables to force merges

OPTIMIZE TABLE logs FINAL;

Clean up old tables or unused databases

Drop stale or abandoned tables:

Drop entire databases if needed:

Always ensure no production data is affected.

ClickHouse stores metadata, parts, WAL logs, and temp files under /var/lib/clickhouse. You should
monitor this path inside the container and from the host.

To drill down:

Identify unexpectedly large directories like /store, /tmp, or /data.

ClickHouse writes to /var/lib/clickhouse/tmp and /var/log/clickhouse-server/:

Clear if disk is nearing full. Rotate or truncate logs if necessary.

If mutations or insert queues are stuck:

Investigate and resolve the root cause. Consider restarting ClickHouse after clearing safe logs.

DROP TABLE old_analytics;

DROP DATABASE dev_test;

Managing and Optimizing Files on Disk

Monitor disk from inside container

docker-compose exec clickhouse du -sh /var/lib/clickhouse

docker-compose exec clickhouse du -sh /var/lib/clickhouse/*

Purge temporary files and logs

docker-compose exec clickhouse du -sh /var/lib/clickhouse/tmp

docker-compose exec clickhouse du -sh /var/log/clickhouse-server/

Clean WALs and outdated mutations

SELECT * FROM system.mutations WHERE is_done = 0;

Use partitioning: Partition large tables by time (e.g., daily, monthly) to enable faster drops
and better merge control.
Archive old data: Move cold data to object storage (S3, etc.) or external databases for
long-term storage.
Avoid oversized inserts: Insert in smaller chunks to avoid bloating parts and reduce
memory pressure during merges.
Rotate logs: If ClickHouse logs to file, configure log rotation:

Use ZSTD compression: Prefer ZSTD over LZ4 for better compression ratio at the cost of
slightly higher CPU.
Monitor merges and disk pressure: Use system.metrics and system.events to track merge
performance, part counts, and disk usage trends.
Backup externally: Don’t store backups on the same disk. Use Elestio backup options to
archive to remote or cloud storage.

Best Practices for ClickHouse Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

Database Migration

Database Migration

Migrating or cloning ClickHouse across cloud providers or geographic regions is essential for
optimizing performance, meeting compliance requirements, or ensuring high availability.
ClickHouse, being a distributed columnar OLAP database, introduces some unique considerations
due to its architecture of shards and replicas. A well-planned migration ensures data consistency,
system integrity, and minimal downtime.

Before initiating a ClickHouse migration, it is critical to plan for both the data layout and cluster
topology:

Evaluate the Current Setup: Document the existing ClickHouse configuration, including
cluster layout (shards and replicas), table schemas (especially ReplicatedMergeTree
tables), user roles, ZooKeeper (or ClickHouse Keeper) setup, and storage configurations.
Identify custom functions, dictionaries, and any external dependencies like Kafka or S3.
Define the Migration Target: Choose the new region or cloud provider. Ensure the
target environment supports similar storage and compute characteristics. Plan how the
new cluster will be laid out—same shard/replica pattern or adjusted topology. If using
cloud-native services (e.g., Elestio), verify feature parity.
Provision the Target Environment: Deploy the ClickHouse nodes with required
hardware specs (high IOPS disks, sufficient RAM/CPU). Set up coordination services
(ZooKeeper or ClickHouse Keeper) and prepare the cluster topology in configuration files (
remote_servers.xml, zookeeper.xml, etc.).
Backup the Current Cluster: Use ClickHouse’s built-in backup tools (BACKUP and
RESTORE SQL commands, or clickhouse-backup utility) to create consistent snapshots.
Ensure backups include both schema and data. Store backups on cloud-agnostic storage
(e.g., S3) for ease of access during restoration.

To begin cloning ClickHouse, replicate the original cluster’s configuration in the new environment,
ensuring that the shard and replica layout, coordination services (ZooKeeper or ClickHouse
Keeper), and access controls are all set up identically. This includes copying configuration files such
as users.xml, remote_servers.xml, and zookeeper.xml, and verifying that all inter-node
communication is functional.

Cloning a Service to Another
Provider or Region

Pre-Migration Preparation

Cloning Execution

For table data, use ClickHouse’s native BACKUP and RESTORE SQL commands or the clickhouse-
backup utility, ideally in combination with cloud object storage like S3 for efficient parallel upload
and download. When restoring, ensure that ReplicatedMergeTree tables use new, unique
ZooKeeper paths to avoid replication conflicts with the original cluster. In the case of non-
replicated tables, manual data export and import (e.g., using INSERT SELECT or clickhouse-client --
query) may be necessary.

After the data and schema have been restored, perform thorough validation by running sample
queries, verifying performance against expected baselines, and inspecting logs for errors. Finally,
ensure all integrations (e.g., Kafka pipelines, distributed tables, user-defined functions) are
functional and fully consistent with the original service before proceeding to production traffic
cutover.

Once the new ClickHouse cluster has been validated, you can proceed with the traffic cutover.
Update your application’s client connection strings, service discovery endpoints, or load balancer
configurations to direct requests to the new cluster. If you’re using DNS-based routing, update A or
CNAME records accordingly, taking into account DNS propagation times.

For setups requiring high availability or a gradual transition, consider using weighted DNS records
or a load balancer with health checks to route a portion of traffic to the new cluster while
monitoring its performance. Ensure that all downstream applications, dashboards, and data
pipelines are updated with the new endpoints and credentials. If feasible, maintain the old cluster
temporarily as a fallback until the new environment is confirmed stable in production.

Validate Application Workflows: Test analytics dashboards, queries, and data
pipelines against the new cluster. Ensure integrations (e.g., Grafana, Kafka consumers,
exporters) are fully functional.
Monitor Performance: Use ClickHouse’s system.metrics and system.events tables to
monitor performance. Validate disk space usage, query latency, and background merges.
Adjust settings like max_threads, merge_max_size, or background_pool_size for the new
environment.
Secure the Environment: Reapply user and role settings with secure password policies.
Enable TLS for inter-node and client communications. Restrict access using firewalls, IP
allowlists, and RBAC.
Cleanup and Documentation: Decommission the old cluster only after full confidence in
the new setup. Document changes in configuration, node addresses, backup schedules,
and operational runbooks.

Cutover and DNS/Traffic Switch

Post-Migration Validation and Optimization

Benefits of Cloning ClickHouse

Cloning a ClickHouse cluster provides several operational and strategic benefits. It allows teams to
test version upgrades, schema changes, and application features on production-like data without
impacting live systems. Maintaining a cloned cluster in a separate region or cloud provider also
enables robust disaster recovery by providing a ready-to-promote standby.

For organizations with strict compliance or analytics needs, clones can serve as read-only
environments for querying and reporting without risking the integrity of live data. Additionally,
cloning simplifies cloud migrations by replicating the entire setup schema, configuration, and data
into a new environment, thereby minimizing downtime, reducing manual setup, and accelerating
cutover with high confidence.

Database Migration

Elestio provides a easy and reliable approach for migrating ClickHouse instances from various
environments such as on-premises servers, self-managed cloud deployments, or other managed
services into its fully managed ClickHouse platform. This migration process is designed to ensure
data consistency, minimize downtime, and simplify the operational complexity of managing
ClickHouse infrastructure.

Before initiating your ClickHouse migration, proper preparation is essential to ensure a seamless
and error-free transition:

Create an Elestio Account: Sign up on the Elestio platform to access its suite of
managed services. This account will serve as the central hub for provisioning and
managing your ClickHouse instance.
Deploy the Target ClickHouse Service: Create a new ClickHouse service on Elestio to
act as the migration destination. Ensure that the version matches your current ClickHouse
setup to prevent compatibility issues. Refer to Elestio’s ClickHouse documentation for
supported features such as replication, sharding, merge trees, and compression settings.

With the target environment ready, proceed with the ClickHouse migration using the Elestio
migration interface:

Access the Migration Tool: Navigate to your ClickHouse service overview on the Elestio
dashboard. Select the “Migrate Database” option to begin the guided migration workflow.
Configure Migration Settings: A prompt will appear to verify that the destination
ClickHouse instance has sufficient CPU, RAM, and disk space to receive the source data.
Once verified, click “Get started” to begin the migration.
Validate Source ClickHouse Connection: Enter the connection details for your existing
ClickHouse instance, including:
Hostname – IP address or domain of the source ClickHouse server
Port – Default ClickHouse port (9000 for native TCP, 8123 for HTTP)
Username & Password – Use credentials with read permissions on all target tables

Database Migration Services for
ClickHouse

Key Steps in Migrating to Elestio

Pre-Migration Preparation

Initiating the Migration Process

Database Name – The specific ClickHouse database you wish to migrate
Click “Run Check” to validate connectivity. Elestio will confirm it can securely access and
read from your ClickHouse instance.

Execute the Migration: If all checks pass, click “Start migration.” Elestio will begin
copying schema definitions, table structures, and all dataset partitions into the new
ClickHouse environment. Depending on the dataset size and source performance, this
process may take time. Real-time logs and progress indicators will be available to help
track progress and address issues promptly.

Once the ClickHouse migration is complete, it’s critical to validate the deployment and ensure
optimal performance:

Verify Data Consistency: Use clickhouse-client or Elestio’s integrated terminal to
compare row counts, table checksums, and sample queries between source and
destination. Confirm that partitions, indexes, and materialized views are intact and
functioning.
Test Application Connectivity: Update your application’s ClickHouse connection
settings to use the new host, port, and credentials provided by Elestio. Test query
performance, batch insert operations, and any dependent pipelines or BI dashboards.
Optimize Performance: Utilize Elestio’s dashboard to monitor CPU, disk IO, and query
execution times. Adjust merge tree settings, buffer sizes, and caching parameters to suit
your workload. You can also enable sharding or vertical scaling options as needed.
Implement Security Best Practices: Secure your ClickHouse instance by configuring IP
allowlists, rotating user credentials, and enabling TLS (if applicable). Elestio provides built-
in access control and network isolation to reduce the risk of unauthorized access.
Clean Up and Document: After successful validation, decommission the old ClickHouse
environment if it’s no longer needed. Update internal documentation with new hostnames,
credentials, cluster topology (if applicable), and any architectural changes made during
migration.

Post-Migration Validation and Optimization

https://docs.elest.io/uploads/images/gallery/2025-06/VFJimage.png

Migrating ClickHouse to Elestio delivers several operational and strategic benefits:

Simplified Management: Elestio handles routine ClickHouse operations like backups,
software updates, storage provisioning, and cluster scaling. Its dashboard provides real-
time performance insights, query logs, and system metrics all without needing a
dedicated database administrator.
Security: Elestio keeps ClickHouse up to date with the latest security patches and offers
built-in credential management, IP allowlists, and encrypted connections. Scheduled
backups and high-availability options ensure data safety and business continuity.
Performance: Elestio’s infrastructure is tuned to support large-scale analytical workloads
with minimal latency. It supports both single-node and clustered ClickHouse setups,
providing flexibility for batch analytics, OLAP queries, and real-time data processing.
Scalability: ClickHouse services on Elestio are built to grow with your needs. Users can
scale up compute and storage, attach read replicas, or enable distributed clusters.
Upgrades and reconfigurations are handled with minimal downtime, making scaling
seamless.

Benefits of Using Elestio for ClickHouse

Database Migration

Manual migrations using ClickHouse’s native tools, such as clickhouse-client, clickhouse-backup,
and SQL dump files, are ideal for users who require full control over data export and import,
particularly during transitions between providers, ClickHouse version upgrades, or importing
existing self-managed ClickHouse datasets into Elestio’s managed environment. This guide walks
through the process of performing a manual migration to and from Elestio ClickHouse services
using command-line tools, ensuring data portability, consistency, and transparency at every step.

Manual migration using native ClickHouse tools is well-suited for scenarios that demand complete
control over the migration process. It is especially useful when transferring data from a self-hosted
ClickHouse instance, an on-premises server, or another cloud provider into Elestio’s managed
ClickHouse service. This method supports one-time imports without requiring persistent
connections between source and destination systems.

It also provides a reliable approach for performing version upgrades. Because ClickHouse allows full
schema and data exports via SQL or compressed binary backups, it can restore into newer versions
with minimal compatibility issues. When Elestio’s built-in migration tools are not applicable such as
migrations from isolated environments or partial database exports manual migration becomes the
preferred option. It also supports offline backup and archiving, enabling users to store, transport,
and restore datasets independent of platform-specific tools.

Before starting the migration, ensure that ClickHouse is properly installed on both the source
system and your Elestio service. The source ClickHouse server must allow access (if remote) and
have a user with sufficient privileges to export databases, tables, and relevant partitions.

On the Elestio side, provision a ClickHouse service through the dashboard. Once active, retrieve
the connection credentials from the Database Info section, which includes host, port (typically 9000
for TCP or 8123 for HTTP), username, and password. Confirm that your public IP is permitted under
Cluster Overview > Security > Limit access per IP to ensure the ClickHouse port is reachable.

Manual ClickHouse Migration
Using clickhouse-backup

When to Use Manual Migration

Performing the Migration

Prepare the Environments

Create a Backup Using ClickHouse Native Tools

There are two primary methods to export a dataset from a ClickHouse instance:

Option 1: SQL Dump

To generate a schema and data dump, run:

Repeat this process for all required tables.

Option 2: Use clickhouse-backup

Alternatively, use the clickhouse-backup tool to create compressed backups that include metadata
and data:

This tool can also store backups locally or push them to S3-compatible storage.

Use a secure file transfer utility such as SCP to move exported files to the system that will connect
to Elestio:

If using clickhouse-backup, copy the backup directory or the downloaded archive. These files will
be restored into the Elestio-managed ClickHouse instance using the same tools or SQL replay.

To restore using SQL:

1. Recreate the schema:

2. Import the data:

clickhouse-client --host <source_host> --query="SHOW CREATE TABLE <db>.<table>" > schema.sql

clickhouse-client --host <source_host> --query="SELECT * FROM <db>.<table> FORMAT Native" >

data.native

clickhouse-backup create migration_snapshot

clickhouse-backup upload migration_snapshot

Transfer the Backup to the Target

scp -r /path/to/backup user@host:/path/to/restore-system/

Restore the Dataset to Elestio

clickhouse-client --host <elestio_host> --port 9000 --user <username> --password <password> <

schema.sql

clickhouse-client --host <elestio_host> --port 9000 --user <username> --password <password> --

query="INSERT INTO <db>.<table> FORMAT Native" < data.native

If using clickhouse-backup, download the backup onto a local or remote machine with access to
Elestio. Then:

Ensure the schema is created before restoring data, and verify that all necessary tables and
partitions are populated.

After the migration, verify that your Elestio ClickHouse instance contains all expected data and
performs correctly:

Check Row Count

List Tables

Query Sample Data
Run queries to validate critical business metrics or analytical functions. Check that
partitioning, primary keys, and indexes are preserved.

Finally, ensure that application connection strings have been updated to point to the new Elestio-
hosted ClickHouse service and that dashboards, ingestion pipelines, or integrations function
correctly.

Manual ClickHouse migration using native tools and backup utilities offers several important
advantages:

Portability and Compatibility: Native ClickHouse formats (SQL, Native, backups) are
open and can be restored into any compatible instance across VMs, containers, or cloud
providers.
Version Flexibility: Easily move between ClickHouse versions using exports that do not
rely on replication or binary compatibility.
Offline Storage: Backup files can be archived, versioned, and stored offline to support
disaster recovery, compliance, and long-term retention.
Platform Independence: Elestio supports open standards and does not enforce vendor
lock-in. Migrations using native tools provide full control over schema design, data

clickhouse-backup restore migration_snapshot

Validate the Migration

clickhouse-client --host <elestio_host> --port 9000 --user <username> --password <password> --

query="SELECT count() FROM <db>.<table>"

clickhouse-client --host <elestio_host> --port 9000 --user <username> --password <password> --

query="SHOW TABLES FROM <db>"

Benefits of Manual Migration

ownership, and performance tuning.

Cluster Management

Cluster Management

Elestio provides a complete solution for setting up and managing software clusters. This helps
users deploy, scale, and maintain applications more reliably. Clustering improves performance and
ensures that services remain available, even if one part of the system fails. Elestio supports
different cluster setups to handle various technical needs like load balancing, failover, and data
replication.

Elestio supports clustering for a wide range of open-source software. Each is designed to support
different use cases like databases, caching, and analytics:

MySQL:
Supports Single Node, Primary/Replica, and Multi-Master cluster types. These allow users
to create simple setups or more advanced ones where reads and writes are distributed
across nodes. In a Primary/Replica setup, replicas are updated continuously through
replication. These configurations are useful for high-traffic applications that need fast and
reliable access to data.
PostgreSQL:
PostgreSQL clusters can be configured for read scalability and failover protection.
Replication ensures that data written to the primary node is copied to replicas. Clustering
PostgreSQL also improves query throughput by offloading read queries to replicas. Elestio
handles replication setup and node failover automatically.
Redis/KeyDB/Valkey:
These in-memory data stores support clustering to improve speed and fault tolerance.
Clustering divides data across multiple nodes (sharding), allowing horizontal scaling.
These tools are commonly used for caching and real-time applications, so fast failover and
data availability are critical.
Hydra and TimescaleDB:
These support distributed and time-series workloads, respectively. Clustering helps
manage large datasets spread across many nodes. TimescaleDB, built on PostgreSQL,
benefits from clustering by distributing time-based data for fast querying. Hydra uses
clustering to process identity and access management workloads more efficiently in high-
load environments.
ClickHouse:
ClickHouse supports distributed and replicated clustering modes, enabling high-
performance analytics on large datasets. Clustering allows sharding across multiple nodes
for horizontal scaling and replication for fault tolerance. This makes ClickHouse ideal for
real-time dashboards, monitoring, and analytical workloads that require fast ingestion and
low-latency queries. Elestio automates the setup of shards and replicas, making it easy to
deploy robust ClickHouse clusters with minimal manual effort.

Overview

Supported Software for Clustering:

Elestio offers several clustering modes, each designed for a different balance between simplicity,
speed, and reliability:

Single Node:
This setup has only one node and is easy to manage. It acts as a standalone Primary
node. It’s good for testing, development, or low-traffic applications. Later, you can scale to
more nodes without rebuilding the entire setup. Elestio lets you expand this node into a
full cluster with just a few clicks.
Primary/Replica:
One node (Primary) handles all write operations, and one or more Replicas handle read
queries. Replication is usually asynchronous and ensures data is copied to all replicas.
This improves read performance and provides redundancy if the primary node fails.
Elestio manages automatic data syncing and failover setup.

Elestio’s cluster dashboard includes tools for managing, monitoring, and securing your clusters.
These help ensure stability and ease of use:

Node Management:
You can scale your cluster by adding or removing nodes as your app grows. Adding a node
increases capacity; removing one helps reduce costs. Elestio handles provisioning and
configuring nodes automatically, including replication setup. This makes it easier to scale
horizontally without downtime.
Backups and Restores:
Elestio provides scheduled and on-demand backups for all nodes. Backups are stored

Cluster Configurations:

Cluster Management Features:

https://docs.elest.io/uploads/images/gallery/2025-06/image.png

securely and can be restored if something goes wrong. You can also create a snapshot
before major changes to your system. This helps protect against data loss due to failures,
bugs, or human error.
Access Control:
You can limit access to your cluster using IP allowlists, ensuring only trusted sources can
connect. Role-based access control (RBAC) can be applied for managing different user
permissions. SSH and database passwords are generated securely and can be rotated
easily from the dashboard. These access tools help reduce the risk of unauthorized
access.
Monitoring and Alerts:
Real-time metrics like CPU, memory, disk usage, and network traffic are available through
the dashboard. You can also check logs for troubleshooting and set alerts for high
resource usage or failure events. Elestio uses built-in observability tools to monitor the
health of your cluster and notify you if something needs attention. This allows you to
catch problems early and take action.

Cluster Management

Creating a cluster is a foundational step when deploying services in Elestio. Clusters provide
isolated environments where you can run containerized workloads, databases, and applications.
Elestio’s web dashboard helps the process, allowing you to configure compute resources, choose
cloud providers, and define deployment regions without writing infrastructure code. This guide
walks through the steps required to create a new cluster using the Elestio dashboard.

To get started, you’ll need an active Elestio account. If you’re planning to use your own
infrastructure, make sure you have valid credentials for your preferred cloud provider (like AWS,
GCP, Azure, etc.). Alternatively, you can choose to deploy clusters using Elestio-managed
infrastructure, which requires no external configuration.

Once you’re logged into the Elestio dashboard, navigate to the Clusters section from the sidebar.
You’ll see an option to Create a new cluster clicking this will start the configuration process. The
cluster creation flow is flexible but simple for defining essential details like provider, region, and
resources in one place.

Prerequisites

Creating a Cluster

Deploying a New Cluster

Now, select the database service of your choice that you need to create in a cluster environment.
Click on Select button as you choose one.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-23-at-2-09-00-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-00-18-pm.jpg

During setup, you’ll be asked to choose a hosting provider. Elestio supports both managed and
BYOC (Bring Your Own Cloud) deployments, including AWS, DigitalOcean, Hetzner, and custom
configurations. You can then select a region based on latency or compliance needs, and specify the
number of nodes along with CPU, RAM, and disk sizes per node.

If you’re setting up a high-availability cluster, the dashboard also allows you to configure cluster-
related details under Cluster configuration, where you get to select things like replication
modes, number of replicas, etc. After you’ve configured the cluster, review the summary to ensure
all settings are correct. Click the Create Cluster button to begin provisioning.

https://docs.elest.io/uploads/images/gallery/2025-06/KzGimage.png

Elestio will start the deployment process, and within a few minutes, the cluster will appear in your
dashboard. Once your cluster is live, it can be used to deploy new nodes and additional
configurations. Each cluster supports real-time monitoring, log access, and scaling operations
through the dashboard. You can also set up automated backups and access control through built-in
features available in the cluster settings.

Enter section select mode

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-02-29-pm.jpg

Cluster Management

Node management plays a critical role in operating reliable and scalable infrastructure on Elestio.
Whether you’re deploying stateless applications or stateful services like databases, managing the
underlying compute units nodes is essential for maintaining stability and performance.

In Elestio, a node is a virtual machine that contributes compute, memory, and storage resources to
a cluster. Clusters can be composed of a single node or span multiple nodes, depending on
workload demands and availability requirements. Each node runs essential services and containers
as defined by your deployed applications or databases.

Nodes in Elestio are provider-agnostic, meaning the same concepts apply whether you’re using
Elestio-managed infrastructure or connecting your own cloud provider (AWS, Azure, GCP, etc.).
Each node is isolated at the VM level but participates fully in the cluster’s orchestration and
networking. This abstraction allows you to manage infrastructure without diving into the
complexity of underlying platforms.

The Elestio dashboard allows you to manage the lifecycle of nodes through clearly defined
operations. These include:

Creating a node, which adds capacity to your cluster and helps with horizontal scaling of
services. This is commonly used when load increases or when preparing a high-availability
deployment.
Deleting a node, which removes underutilized or problematic nodes. Safe deletion
includes draining workloads to ensure service continuity.
Promoting a node, which changes the role of a node within the cluster—typically used in
clusters with redundancy, where certain nodes may need to take on primary or leader
responsibilities.

Each of these operations is designed to be safely executed through the dashboard and is validated
against the current cluster state to avoid unintended service disruption. These actions are
supported by Elestio’s backend orchestration, which handles tasks like container rescheduling and
load balancing when topology changes.

Node Management

Understanding Nodes

Node Operations

Monitoring is a key part of effective node management. Elestio provides per-node visibility through
the dashboard, allowing you to inspect CPU, memory, and disk utilization in real time. Each
node also exposes logs, status indicators, and health checks to help detect anomalies or
degradation early.

In addition to passive monitoring, the dashboard supports active maintenance tasks. You can
reboot a node when applying system-level changes or troubleshooting, or drain a node to safely
migrate workloads away from it before performing disruptive actions. Draining ensures that
running containers are rescheduled on other nodes in the cluster, minimizing service impact.

For production setups, combining resource monitoring with automation like scheduled reboots, log
collection, and alerting can help catch issues before they affect users. While Elestio handles many
aspects of orchestration automatically, having visibility at the node level helps teams make
informed decisions about scaling, updates, and incident response.

Cluster-wide resource graphs and node-level metrics are also useful for capacity planning.
Identifying trends such as memory saturation or disk pressure allows you to preemptively scale or
rebalance workloads, reducing the risk of downtime.

Monitoring and Maintenance

Cluster Management

As your application usage grows or your infrastructure requirements change, scaling your cluster
becomes essential. In Elestio, you can scale horizontally by adding new nodes to an existing
cluster. This operation allows you to expand your compute capacity, improve availability, and
distribute workloads more effectively.

There are several scenarios where adding a node becomes necessary. One of the most common
cases is resource saturation when existing nodes are fully utilized in terms of CPU, memory, or
disk. Adding another node helps distribute the workload and maintain performance under load.

In clusters that run stateful services or require high availability, having additional nodes
ensures that workloads can fail over without downtime. Even in development environments, nodes
can be added to isolate environments or test services under production-like load conditions.
Scaling out also gives you flexibility when deploying services with different resource profiles or
placement requirements.

To begin, log in to the Elestio dashboard and navigate to the Clusters section from the sidebar.
Select the cluster you want to scale. Once inside the cluster view, switch to the Nodes tab. This
section provides an overview of all current nodes along with their health status and real-time
resource usage.

Adding a Node

Need to Add a Node

Add a Node to Cluster

https://dash.elest.io/
https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-05-37-pm.jpg

To add a new node, click the “Add Node” button. This opens a configuration panel where you can
define the specifications for the new node. You’ll be asked to specify the amount of CPU, memory,
and disk you want to allocate. If you’re using a bring-your-own-cloud setup, you may also need to
confirm or choose the cloud provider and deployment region.

After configuring the node, review the settings to ensure they meet your performance and cost
requirements. Click “Create” to initiate provisioning. Elestio will begin setting up the new node,
and once it’s ready, it will automatically join your cluster.

Once provisioned, the new node will appear in the node list with its own metrics and status
indicators. You can monitor its activity, verify that workloads are being scheduled to it, and access
its logs directly from the dashboard. From this point onward, the node behaves like any other in the
cluster and can be managed using the same lifecycle actions such as rebooting or draining.

After the node has been added, it becomes part of the active cluster and is available for scheduling
workloads. Elestio’s orchestration layer will begin using it automatically, but you can further
customize service placement through resource constraints or affinity rules if needed.

Post-Provisioning Considerations

https://docs.elest.io/uploads/images/gallery/2025-06/azlscreenshot-2025-06-09-at-1-05-37-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-20-18-pm.jpg

For performance monitoring, the dashboard provides per-node metrics, including CPU load,
memory usage, and disk I/O. This visibility helps you confirm that the new node is functioning
correctly and contributing to workload distribution as expected.

Maintenance actions such as draining or rebooting the node are also available from the same
interface, making it easy to manage the node lifecycle after provisioning.

Cluster Management

Clusters can be designed for high availability or role-based workloads, where certain nodes may
take on leadership or coordination responsibilities. In these scenarios, promoting a node is a key
administrative task. It allows you to change the role of a node. While not always needed in basic
setups, node promotion becomes essential in distributed systems, replicated databases, or services
requiring failover control.

Promoting a node is typically performed in clusters where role-based architecture is used. In high-
availability setups, some nodes may act as leaders while others serve as followers or replicas. If a
leader node becomes unavailable or needs to be replaced, you can promote another node to take
over its responsibilities and maintain continuity of service.

Node promotion is also useful when scaling out and rebalancing responsibilities across a larger
cluster. For example, promoting a node to handle scheduling, state tracking, or replication
leadership can reduce bottlenecks and improve responsiveness. In cases involving database
clusters or consensus-driven systems, promotion ensures a clear and controlled transition of
leadership without relying solely on automatic failover mechanisms.

To promote a node, start by accessing the Clusters section in the Elestio dashboard. Choose the
cluster containing the node you want to promote. Inside the cluster view, navigate to the Nodes
 tab to see the full list of nodes, including their current roles, health status, and resource
usage. Locate the node that you want to promote and open its action menu. From here, select the
“Promote Node” option.

Promoting a Node

When to Promote a Node?

Promote a Node in Elestio

https://dash.elest.io/

You may be prompted to confirm the action, depending on the configuration and current role of the
node. This confirmation helps prevent unintended role changes that could affect cluster behavior.

Once confirmed, Elestio will initiate the promotion process. This involves reconfiguring the cluster’s
internal coordination state to acknowledge the new role of the promoted node. Depending on the
service architecture and the software running on the cluster, this may involve reassigning
leadership, updating replication targets, or shifting service orchestration responsibilities.

After promotion is complete, the node’s updated role will be reflected in the dashboard. At this
point, it will begin operating with the responsibilities assigned to its new status. You can monitor its
activity, inspect logs, and validate that workloads are being handled as expected.

Before promoting a node, ensure that it meets the necessary resource requirements and is in a
stable, healthy state. Promoting a node that is under high load or experiencing performance issues
can lead to service degradation. It’s also important to consider replication and data
synchronization, especially in clusters where stateful components like databases are in use.

Considerations for Promotion

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-22-42-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/2MCimage.png

Promotion is a safe and reversible operation, but it should be done with awareness of your
workload architecture. If your system relies on specific leader election mechanisms, promoting a
node should follow the design patterns supported by those systems.

Cluster Management

Over time, infrastructure needs change. You may scale down a cluster after peak load,
decommission outdated resources, or remove a node that is no longer needed for cost, isolation, or
maintenance reasons. Removing a node from a cluster is a safe and structured process designed to
avoid disruption. The dashboard provides an accessible interface for performing this task while
preserving workload stability.

Node removal is typically part of resource optimization or cluster reconfiguration. You might
remove a node when reducing costs in a staging environment, when redistributing workloads
across fewer or more efficient machines, or when phasing out a node for maintenance or
retirement.

Another common scenario is infrastructure rebalancing, where workloads are shifted to newer
nodes with better specs or different regions. Removing an idle or underutilized node can simplify
management and reduce noise in your monitoring stack. It also improves scheduling efficiency by
removing unneeded targets from the orchestration engine.

In high-availability clusters, node removal may be preceded by data migration or role reassignment
(such as promoting a replica). Proper planning helps maintain system health while reducing
reliance on unnecessary compute resources.

To begin the removal process, open the Elestio dashboard and navigate to the Clusters section.
Select the cluster that contains the node you want to remove. From within the cluster view, open
the Nodes tab to access the list of active nodes and their statuses.

Find the node you want to delete from the list. If the node is currently running services, ensure that
those workloads can be safely rescheduled to other nodes or are no longer needed. Since Elestio
does not have a built-in drain option, any workload redistribution needs to be handled manually,
either by adjusting deployments or verifying that redundant nodes are available. Once the node is
drained and idle, open the action menu for that node and select “Delete Node”.

Removing a Node

Why Remove a Node?

Remove a Node

https://dash.elest.io/

The dashboard may prompt you to confirm the operation. After confirmation, Elestio will begin the
decommissioning process. This includes detaching the node from the cluster, cleaning up any
residual state, and terminating the associated virtual machine.

Once the operation completes, the node will no longer appear in the cluster’s node list, and its
resources will be released.

Before removing a node in Elestio, it’s important to review the services and workloads currently
running on that node. Since Elestio does not automatically redistribute or migrate workloads during
node removal, you should ensure that critical services are either no longer in use or can be

Considerations for Safe Node
Removal

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-1-24-05-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/bDHimage.png

manually rescheduled to other nodes in the cluster. This is particularly important in multi-node
environments running stateful applications, databases, or services with specific affinity rules.

You should also verify that your cluster will have sufficient capacity after the node is removed. If
the deleted node was handling a significant portion of traffic or compute load, removing it without
replacement may lead to performance degradation or service interruption. In high-availability
clusters, ensure that quorum-based components or replicas are not depending on the node
targeted for deletion. Additionally, confirm that the node is not playing a special role such as
holding primary data or acting as a manually promoted leader before removal. If necessary,
reconfigure or promote another node prior to deletion to maintain cluster integrity.

Cluster Management

Reliable backups are essential for data resilience, recovery, and business continuity. Elestio
provides built-in support for managing backups across all supported services, ensuring that your
data is protected against accidental loss, corruption, or infrastructure failure. The platform includes
an automated backup system with configurable retention policies and a straightforward restore
process, all accessible from the dashboard. Whether you’re operating a production database or a
test environment, understanding how backups and restores work in Elestio is critical for
maintaining service reliability.

Elestio provides multiple backup mechanisms designed to support various recovery and
compliance needs. Backups are created automatically for most supported services, with consistent
intervals and secure storage in managed infrastructure. These backups are performed in the
background to ensure minimal performance impact and no downtime during the snapshot process.
Each backup is timestamped, versioned, and stored securely with encryption. You can access your
full backup history for any given service through the dashboard and select any version for
restoration.

You can utilize different backup options depending on your preferences and operational
requirements. Elestio supports manual local backups for on-demand recovery points,
automated snapshots that capture the state of the service at fixed intervals, and automated
remote backups using Borg, which securely stores backups on external storage volumes
managed by Elestio. In addition, you can configure automated external backups to S3-
compatible storage, allowing you to maintain full control over long-term retention and
geographic storage preferences.

Backups and Restores

Cluster Backups

Restoring a backup in Elestio is a user-initiated operation, available directly from the service
dashboard. Once you’re in the dashboard, select the service you’d like to restore. Navigate to the
Backups section, where you’ll find a list of all available backups along with their creation
timestamps.

To initiate a restore, choose the desired backup version and click on the “Restore” option. You will
be prompted to confirm the operation. Depending on the type of service, the restore can either
overwrite the current state or recreate the service as a new instance from the selected backup.

The restore process takes a few minutes, depending on the size of the backup and the service
type. Once completed, the restored service is immediately accessible. In the case of databases,
you can validate the restore by connecting to the database and inspecting the restored data.

Restoring from a Backup

https://docs.elest.io/uploads/images/gallery/2025-06/zpYimage.png
https://docs.elest.io/uploads/images/gallery/2025-06/WqMimage.png

Before restoring a backup, it’s important to understand the impact on your current data.
Restores may overwrite existing service state, so if you need to preserve the current
environment, consider creating a manual backup before initiating the restore. In critical
environments, restoring to a new instance and validating the data before replacing the
original is a safer approach.
Keep in mind that restore operations are not instantaneous and may temporarily affect
service availability. It’s best to plan restores during maintenance windows or periods of
low traffic, especially in production environments.
For services with high-frequency data changes, be aware of the backup schedule and
retention policy. Elestio’s default intervals may not capture every change, so for high-
volume databases, consider exporting incremental backups manually or using continuous
replication where supported.

Elestio provides visibility into your backup history directly through the dashboard. You can monitor
the status, timestamps, and success/failure of backup jobs. In case of errors or failed backups,
the dashboard will display alerts, allowing you to take corrective actions or contact support if
necessary.

It’s good practice to periodically verify that backups are being generated and that restore points
are recent and complete. This ensures you’re prepared for unexpected failures and that recovery
options remain reliable.

Considerations for Backup &
Restore

Monitoring Backup Health

Cluster Management

In distributed systems, consistency and synchronization between nodes are critical to ensure that
services behave reliably and that data remains accurate across the cluster. Elestio provides built-in
mechanisms to detect and resolve inconsistencies across nodes using a feature called Cluster
Resynchronization. This functionality ensures that node-level configurations, data replication,
and service states are properly aligned, especially after issues like node recovery, temporary
network splits, or service restarts.

Resynchronization is typically required when secondary nodes in a cluster are no longer consistent
with the primary node. This can happen due to temporary network failures, node restarts,
replication lag, or partial service interruptions. In such cases, secondary nodes may fall behind or
store incomplete datasets, which could lead to incorrect behavior if a failover occurs or if read
operations are directed to those nodes. Unresolved inconsistencies can result in data divergence,
serving outdated content, or failing health checks in load-balanced environments. Performing a
resynchronization ensures that all secondary nodes are forcibly aligned with the current state of
the primary node, restoring a clean and unified cluster state.

It may also be necessary to perform a resync after restoring a service from backup, during
infrastructure migrations, or after recovering a previously offline node. In each of these cases,
resynchronization acts as a corrective mechanism to ensure that every node is operating with the
same configuration and dataset, reducing the risk of drift and maintaining data integrity across the
cluster.

To perform a resynchronization, start by accessing the Elestio dashboard and navigating to the
Clusters section. Select the cluster where synchronization is needed. On the Cluster Overview
 page, scroll down slightly until you find the “Resync Cluster” option. This option is visible as part
of the cluster controls and is available only in clusters with multiple nodes and a defined primary
node.

Cluster Resynchronization

Need for Cluster Resynchronization

Cluster Resynchronization

https://dash.elest.io/

Clicking the Resync button opens a confirmation dialog. The message clearly explains that this
action will initiate a request to resynchronize all secondary nodes. During the resync process,
existing data on all secondary nodes will be erased and replaced with a copy of the data
from the primary node. This operation ensures full consistency across the cluster but should be
executed with caution, especially if recent changes exist on any of the secondaries that haven’t yet
been replicated.

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-2-31-04-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/Kfkimage.png

You will receive an email notification once the resynchronization is complete. During this process,
Elestio manages the replication safely, but depending on the size of the data, the operation may
take a few minutes. It’s advised to avoid making further changes to the cluster while the resync is
in progress.

Before triggering a resync, it’s important to verify that the primary node holds the desired
state and that the secondary nodes do not contain any critical unsynced data. Since the
resync overwrites the secondary nodes completely, any local changes on those nodes
will be lost.
This action is best used when you’re confident that the primary node is healthy, current,
and stable. Avoid initiating a resync if the primary has recently experienced errors or data
issues. Additionally, consider performing this operation during a low-traffic period, as
synchronization may temporarily impact performance depending on the data volume.
If your application requires high consistency guarantees, it’s recommended to monitor
your cluster closely during and after the resync to confirm that services are functioning
correctly and that the replication process completed successfully.

Considerations Before
Resynchronizing

Cluster Management

When managing production-grade services, the ability to perform reliable and repeatable database
migrations is critical. Whether you’re applying schema changes, updating seed data, or managing
version-controlled transitions, Elestio provides a built-in mechanism to execute migrations safely
from the dashboard. This functionality is especially relevant when running containerized database
services like ClickHouse, or similar within a managed cluster.

Database migrations are commonly required when updating your application’s data model or
deploying new features. Schema updates such as adding columns, modifying data types, creating
indexes, or introducing new tables need to be synchronized with the deployment lifecycle of your
application code.

Migrations may also be needed during version upgrades to introduce structural or configuration
changes required by newer database engine versions. In some cases, teams use migrations to
apply baseline datasets, adjust permissions, or clean up legacy objects. Running these changes
through a controlled migration system ensures consistency across environments and helps avoid
untracked manual changes.

To run a database migration in Elestio, start by logging into the Elestio dashboard and navigating
to the Clusters section. Select the cluster that contains the target database service. From the
Cluster Overview page, scroll down until you find the “Migration” option.

Database Migration

Need for Migrations

Running Database Migration

https://dash.elest.io/

Clicking this option will open the migration workflow, which follows a three-step process:
Configure, Validation, and Migration. In the Configure step, Elestio provides a migration
configuration guide specific to the database type, such as ClickHouse. At this point, you must
ensure that your target service has sufficient disk space to complete the migration. If there is not
enough storage available, the migration may fail midway, so it’s strongly recommended to review
storage utilization beforehand.

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-3-09-45-pm.jpg

Once configuration prerequisites are met, you can proceed to the Validation step. Elestio will
check the secondary database details you have provided for the migration.

https://docs.elest.io/uploads/images/gallery/2025-06/9v6image.png
https://docs.elest.io/uploads/images/gallery/2025-06/QFjimage.png

If the validation passes, the final Migration step will become active. You can then initiate the
migration process. Elestio will handle the actual data transfer, schema replication, and state
synchronization internally. The progress is tracked, and once completed, the migrated database
will be fully operational on the target service.

Before running any migration, it’s important to validate the script or changes in a staging
environment. Since migrations may involve irreversible changes such as dropping
columns, altering constraints, or modifying data careful review and version control are
essential.
In production environments, plan migrations during maintenance windows or low-traffic
periods to minimize the impact of any schema locks or temporary unavailability. If you’re
using replication or high-availability setups, confirm that the migration is compatible with
your architecture and will not disrupt synchronization between primary and secondary
nodes.
You should also ensure that proper backups are in place before applying structural
changes. In Elestio, the backup feature can be used to create a restore point that allows
rollback in case the migration introduces issues.

Considerations Before Running
Migrations

Cluster Management

When a cluster is no longer needed whether it was created for testing, staging, or an obsolete
workload deleting it helps free up resources and maintain a clean infrastructure footprint. Elestio
provides a straightforward and secure way to delete entire clusters directly from the dashboard.
This action permanently removes the associated services, data, and compute resources tied to the
cluster.

Deleting a cluster is a final step often performed when decommissioning an environment. This
could include shutting down a test setup, replacing infrastructure during migration, or retiring an
unused production instance. In some cases, users also delete and recreate clusters as part of major
version upgrades or architectural changes. It is essential to confirm that all data and services tied
to the cluster are no longer required or have been backed up or migrated before proceeding. Since
cluster deletion is irreversible, any services, volumes, and backups associated with the cluster will
be permanently removed.

To delete a cluster, log in to the Elestio dashboard and navigate to the Clusters section. From the
list of clusters, select the one you want to remove. Inside the selected cluster, you’ll find a
navigation bar at the top of the page. One of the available options in this navigation bar is
“Delete Cluster.”

Delete a Cluster

When to Delete a Cluster

Delete a Cluster

https://dash.elest.io/

Clicking this opens a confirmation dialog that outlines the impact of deletion. It will clearly state
that deleting the cluster will permanently remove all associated services, storage, and
configurations. By acknowledging a warning or typing in the cluster name, depending on the
service type. Once confirmed, Elestio will initiate the deletion process, which includes tearing down
all resources associated with the cluster. This typically completes within a few minutes, after which
the cluster will no longer appear in your dashboard.

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-3-20-11-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/ea9image.png

Deleting a cluster also terminates any linked domains, volumes, monitoring configurations, and
scheduled backups. These cannot be recovered once deletion is complete, so plan accordingly
before confirming the action. If the cluster was used for production workloads, consider archiving
data to external storage (e.g., S3) or exporting final snapshots for compliance and recovery
purposes.

Before deleting a cluster, verify that:

All required data has been backed up externally (e.g., downloaded dumps or exports).
Any active services or dependencies tied to the cluster have been reconfigured or shut
down.
Access credentials, logs, or stored configuration settings have been retrieved if needed for
auditing or migration.

Considerations Before Deleting

Cluster Management

Securing access to services is a fundamental part of managing cloud infrastructure. One of the
most effective ways to reduce unauthorized access is by restricting connectivity to a defined set of
IP addresses. Elestio supports IP-based access control through its dashboard, allowing you to
explicitly define which IPs or IP ranges are allowed to interact with your services. This is particularly
useful when exposing databases, APIs, or web services over public endpoints.

Restricting access by IP provides a first layer of network-level protection. Instead of relying solely
on application-layer authentication, you can control who is allowed to even initiate a connection to
your service. This approach reduces the surface area for attacks such as brute-force login
attempts, automated scanning, or unauthorized probing.

Common use cases include:

Limiting access to production databases from known office networks or VPNs.
Allowing only CI/CD pipelines or monitoring tools with static IPs to connect.
Restricting admin dashboards or internal tools to internal teams.

By defining access rules at the infrastructure level, you gain more control over who can reach your
services, regardless of their authentication or API access status.

To restrict access by IP in Elestio, start by logging into the Elestio dashboard and navigating to the
Clusters section. Select the cluster that hosts the service you want to protect. Once inside the
Cluster Overview page, locate the Security section.

Restricting Access by IP

Need to Restrict Access by IP

Restrict Access by IP

https://dash.elest.io/

Within this section, you’ll find a setting labelled “Limit access per IP”. This is where you can
define which IP addresses or CIDR ranges are permitted to access the services running in the
cluster. You can add a specific IPv4 or IPv6 address (e.g., 203.0.113.5) or a subnet in CIDR notation
(e.g., 203.0.113.0/24) to allow access from a range of IPs.

After entering the necessary IP addresses, save the configuration. The changes will apply to all
services running inside the cluster, and only the defined IPs will be allowed to establish network

https://docs.elest.io/uploads/images/gallery/2025-06/screenshot-2025-06-09-at-3-24-25-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-06/tS8image.png

connections. All other incoming requests from unlisted IPs will be blocked at the infrastructure
level.

When applying IP restrictions, it’s important to avoid locking yourself out. Always double-
check that your own IP address is included in the allowlist before applying rules, especially
when working on remote infrastructure.
For users on dynamic IPs (e.g., home broadband connections), consider using a VPN or a
static jump host that you can reliably allowlist. Similarly, if your services are accessed
through cloud-based tools, make sure to verify their IP ranges and update your rules
accordingly when those IPs change.
In multi-team environments, document and review IP access policies regularly to avoid
stale rules or overly permissive configurations. Combine IP restrictions with secure
authentication and encrypted connections (such as HTTPS or SSL for databases) for
layered security.

Considerations When Using IP
Restrictions

