
ClickHouse is a high-performance columnar database designed for real-time analytical processing.
It’s known for its blazing speed, horizontal scalability, and efficient use of disk I/O. Proper setup is
essential for taking advantage of ClickHouse’s full capabilities, including fault tolerance, secure
access, and high query performance. This guide walks through various ways to run and connect to
ClickHouse: using the ClickHouse CLI (clickhouse-client), Docker containers, and command-line
tools for scripting and automation. Best practices are highlighted throughout to ensure robust
deployments.

The ClickHouse command-line interface (clickhouse-client) is a built-in tool used to connect to and
manage ClickHouse servers. It supports both local and remote connections and allows for SQL-
based interaction with the database engine.

If you’re running ClickHouse locally (via package manager or Docker), you can start the CLI with:

For remote connections, specify the hostname, port (default 9000), and user credentials:

Once connected, you can run SQL queries directly from the shell.

Docker provides a fast, reproducible way to run ClickHouse in isolated environments. This is ideal
for local development or self-contained production setups.

If you’re using Elestio for ClickHouse hosting, log into the Elestio dashboard. Go to your ClickHouse
service, then navigate to Tools > Terminal to open a pre-authenticated shell session.

Creating a Database

Creating using clickhouse-client

Connect to ClickHouse:

clickhouse-client

clickhouse-client -h <host> --port <port> -u <username> --password

Running ClickHouse Using Docker

Access Elestio Terminal

Now change the directory:

Elestio-managed services run on Docker Compose. Use this to enter the ClickHouse container:

Once inside the container, the clickhouse-client tool is available. Run it like this (add --password if
needed):

You are now connected to the running ClickHouse instance inside the container.

cd /opt/app/

Access the ClickHouse Container Shell

docker-compose exec clickhouse bash

Access ClickHouse CLI from Inside the Container

clickhouse-client -u <user> --port <port> --password

Test Connectivity

https://docs.elest.io/uploads/images/gallery/2025-06/Cntimage.png

Try creating a database and querying data to verify functionality:

Expected Output:

This confirms read/write operations and query functionality.

clickhouse-client can be used non-interactively for scripting, automation, and cron-based jobs.

For example, to insert data from a shell script:

This is useful for automated ETL jobs, health checks, or backup pipelines.

Adopt consistent naming conventions for databases, tables, and columns. Use lowercase,
underscore-separated names like:

This improves clarity in multi-schema environments and helps with automation and maintenance
scripts.

CREATE DATABASE test_db;

CREATE TABLE test_db.test_table (id UInt32, message String) ENGINE = MergeTree() ORDER BY id;

INSERT INTO test_db.test_table VALUES (1, 'Hello ClickHouse');

SELECT * FROM test_db.test_table;

1	Hello ClickHouse

Connecting Using clickhouse-client in
Scripts

echo "INSERT INTO test_db.test_table VALUES (2, 'Automated')" | \

clickhouse-client -h <host> -u <user> --password

Best Practices for Setting Up
ClickHouse
Use Clear Naming for Databases and Tables

user_events_2024

product_sales_agg

Choose the Right Engine and Indexing Strategy

ClickHouse supports various table engines like MergeTree, ReplacingMergeTree, and
SummingMergeTree. Pick the engine that best matches your use case and define ORDER BY keys
carefully to optimize performance.

Example:

Inappropriate engine selection can lead to poor query performance or high disk usage.

Always configure user-level authentication and restrict access in production. Add users and
passwords in users.xml or via SQL:

Use TLS for encrypted connections by enabling SSL in the config.xml file:

ClickHouse stores data on disk by default, but ensure proper mounting, storage separation, and
backup routines.

In config.xml:

CREATE TABLE logs (

 timestamp DateTime,

 service String,

 message String

) ENGINE = MergeTree()

ORDER BY (timestamp, service);

Enable Authentication and Secure Access

CREATE USER secure_user IDENTIFIED WITH plaintext_password BY 'strong_password';

GRANT ALL ON *.* TO secure_user;

<tcp_port_secure>9440</tcp_port_secure>

<openSSL>

 <server>

 <certificateFile>/etc/clickhouse-server/certs/server.crt</certificateFile>

 <privateKeyFile>/etc/clickhouse-server/certs/server.key</privateKeyFile>

 </server>

</openSSL>

Configure Data Persistence and Storage Paths

<path>/var/lib/clickhouse/</path>

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

<user_files_path>/var/lib/clickhouse/user_files/</user_files_path>

Revision #2
Created 10 June 2025 07:19:40 by kaiwalya
Updated 11 June 2025 05:37:05 by kaiwalya

Use RAID, SSDs, or networked volumes depending on your availability and performance needs.

Use built-in introspection tools like:

For real-time observability, integrate with Grafana, Prometheus, or use ClickHouse Keeper metrics.

Also review:

system.mutations for long-running mutation jobs
system.errors for crash/debug info
system.replication_queue for sync issues in replicated tables

Issue Cause Solution

Authentication failure Wrong password or no user set Double-check credentials; use --
password flag

Cannot connect to localhost Service not running or incorrect port Ensure ClickHouse is running and
check the port

SSL/TLS handshake failed Incorrect certificate paths or
permissions

Verify file locations in config.xml and
restart service

Queries are slow Poor ORDER BY design or unoptimized
table engine

Reevaluate schema design and use
indexes effectively

Data lost after restart Misconfigured data path or ephemeral
container

Ensure proper disk volume mounts
and storage persistence

Monitor and Tune Performance

SELECT * FROM system.metrics;

SELECT * FROM system.query_log ORDER BY event_time DESC LIMIT 10;

SELECT * FROM system.parts;

Common Issues and Their Solutions

https://clickhouse.com/docs/en/operations/monitoring/metrics/

