
ClickHouse is a high-performance, column-oriented OLAP database, but poorly optimized or long-
running queries can still impact performance especially in resource-constrained environments like
Elestio. Because ClickHouse executes large queries across multiple threads and can consume high
memory and disk I/O, monitoring and controlling slow or blocking operations is essential.

This guide explains how to detect, analyze, and terminate long-running queries using terminal
tools, Docker Compose setups, and ClickHouse’s internal system tables. It also outlines
prevention strategies to help maintain system health.

ClickHouse exposes query execution data through system tables like system.processes and
system.query_log. These allow you to monitor currently executing and historical queries for
duration, memory usage, and user activity.

To list currently running queries and their duration:

elapsed is the query runtime in seconds.
memory_usage is in bytes.
This lets you pinpoint queries that are taking too long or consuming excessive memory.

ClickHouse doesn’t have a MONITOR-like command, but you can simulate real-time monitoring by
repeatedly querying system.processes:

Detect and terminate long-
running queries

Monitoring Long-Running Queries

Check Active Queries via Terminal

SELECT

 query_id,

 user,

 elapsed,

 memory_usage,

 query

FROM system.processes

ORDER BY elapsed DESC;

Monitor Query Load in Real Time

This updates every 2 seconds and shows the top 5 longest-running queries.

If you identify a query that is consuming too many resources or blocking critical workloads, you can
terminate it by its query_id.

The <id> can be found in the system.processes table.
This forces termination of the query while leaving the user session intact.

To forcibly kill all long-running queries (e.g., >60 seconds):

If ClickHouse is running inside Docker Compose on Elestio, follow these steps:

Then run:

If authentication is enabled, add --password <your_password>.

You can now run queries like:

Or terminate:

watch -n 2 'clickhouse-client --query="SELECT elapsed, query FROM system.processes ORDER BY

elapsed DESC LIMIT 5"'

Terminating Problematic Queries Safely

Kill a Query by ID

KILL QUERY WHERE query_id = '<id>';

KILL QUERY WHERE elapsed > 60 SYNC;

Use SYNC to wait for the termination to complete before proceeding.“

Managing Inside Docker Compose

Access the ClickHouse Container

docker-compose exec clickhouse bash

clickhouse-client --user default

SELECT query_id, elapsed, query FROM system.processes;

ClickHouse logs completed queries (including failures) in the system.query_log table.

This helps identify patterns or repeat offenders.

ClickHouse provides advanced metrics via system.metrics, system.events, and
system.asynchronous_metrics.

Use to analyze memory pressure, merge operations, disk reads/writes, and thread usage.

To examine detailed breakdowns of CPU usage or IO latency:

KILL QUERY WHERE query_id = '<id>';

Analyzing Query History

View Historical Long-Running Queries

SELECT

 query_start_time,

 query_duration_ms,

 user,

 query

FROM system.query_log

WHERE type = 'QueryFinish'

 AND query_duration_ms > 1000

ORDER BY query_start_time DESC

LIMIT 10;

Understanding Query Latency with Profiling
Tools

Generate a Performance Snapshot

SELECT * FROM system.metrics WHERE value != 0 ORDER BY value DESC;

SELECT * FROM system.events WHERE value > 0 ORDER BY value DESC;

Best Practices to Prevent Long-Running
Queries

Revision #1
Created 11 June 2025 08:54:54 by kaiwalya
Updated 11 June 2025 09:10:26 by kaiwalya

Preventing long-running queries is vital for maintaining ClickHouse performance, especially under
high concurrency or on shared infrastructure.

Avoid Full Table Scans: Use filters on primary key or indexed columns. Avoid queries
without WHERE clauses on large tables.

Limit Result Set Sizes: Avoid returning millions of rows to clients. Use LIMIT and
paginated access.

Optimize Joins and Aggregations: Use ANY INNER JOIN for faster lookups. Avoid joining
two huge datasets unless one is pre-aggregated or dimensionally small.
Avoid High Cardinality Aggregates: Functions like uniqExact() are CPU-intensive.
Prefer approximate variants (uniq()) when precision isn’t critical.
Set Query Timeouts and Memory Limits: Limit resource usage per query:

Use Partitions and Projections: Partition large datasets by time (e.g., toYYYYMM(date))
to reduce scanned rows. Use projections for fast pre-aggregated access.

SELECT count() FROM logs WHERE date >= '2024-01-01';

SELECT * FROM logs ORDER BY timestamp DESC LIMIT 100;

SET max_execution_time = 30;

SET max_memory_usage = 1000000000;

