
Running out of disk space in a ClickHouse environment can cause query failures, part merge errors,
and even full service downtime. ClickHouse is highly dependent on disk for storing columnar data,
part files, metadata, temporary sort buffers, and backups. On platforms like Elestio, infrastructure
is managed, but users are still responsible for monitoring storage, managing data retention, and
optimizing resource usage. This guide explains how to monitor and clean up disk usage, configure
safe retention policies, and implement long-term strategies to prevent full disk scenarios in
ClickHouse when running under Docker Compose

Run this on the host machine to check which mount point is filling up:

This shows usage across all mounted volumes. Look for the mount used by your ClickHouse
volume—usually mapped to something like /var/lib/docker/volumes/clickhouse_data/_data.

Enter the ClickHouse container shell:

Inside, check total ClickHouse disk usage:

To inspect usage of specific folders like data/, tmp/, or store/:

Preventing Full Disk Issues

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec clickhouse bash

du -sh /var/lib/clickhouse

ls -lh /var/lib/clickhouse

Configuring Alerts and Cleaning Up
Storage

On the host, check space used by containers, images, volumes:

List all Docker volumes:

Remove unused volumes (only if you’re sure they’re not needed):

To free space by removing outdated partitions or tables:

If you’re storing backups under /var/lib/clickhouse/backup, list and delete old ones:

Ensure important backups are offloaded before removing.

Check the temp directory inside the container:

Inspect Docker’s storage usage

docker system df

Identify and remove unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Warning: Never delete your active ClickHouse data volume unless you’ve
backed it up.“

Drop data manually using SQL

ALTER TABLE logs DROP PARTITION '2024-01';

TRUNCATE TABLE temp_events;

Clean up local backups

ls -lh /var/lib/clickhouse/backup

rm -rf /var/lib/clickhouse/backup/backup-<timestamp>

Managing Temporary Files

Monitor temporary file usage

du -sh /var/lib/clickhouse/tmp

Old files may remain if queries or merges crashed. Clean up when the system is idle.

Modify the tmp_path in config.xml to use a volume-backed directory:

Restart the container after applying changes.

Avoid storing binary blobs: Do not store large files like PDFs or images in ClickHouse.
Use external object storage and only store references.
Use TTL to expire old data: Automatically delete old data based on timestamps:

Drop old partitions regularly: If partitioned by month/day, remove outdated partitions:

Enable efficient compression: Use ZSTD for better compression and lower disk usage:

Split large inserts into smaller batches: Avoid memory and disk spikes during large
ingest operations.
Optimize background merge load: Tune merge concurrency and thresholds using:

Limit disk spill during queries: Prevent massive temp usage during large operations:

Rotate Docker logs: Prevent logs from filling up your disk using log rotation:

Redirect temporary paths to persistent storage

<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>

Best Practices for Disk Space Management

ALTER TABLE logs MODIFY TTL created_at + INTERVAL 90 DAY;

ALTER TABLE logs DROP PARTITION '2023-12';

CREATE TABLE logs (...) ENGINE = MergeTree() SETTINGS compression = 'ZSTD';

<background_pool_size>8</background_pool_size>

<max_bytes_before_external_sort>500000000</max_bytes_before_external_sort>

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

Revision #1
Created 11 June 2025 10:04:24 by kaiwalya
Updated 11 June 2025 11:12:29 by kaiwalya

Monitor disk usage from ClickHouse itself: Track table-level disk usage using system
tables:

Offload backups to remote storage: Backups inside containers should be copied off-
host. Use Elestio’s backup tool or mount a backup volume:

SELECT table, sum(bytes_on_disk) AS size FROM system.parts GROUP BY table ORDER BY size DESC;

volumes:

 - /mnt/backups:/backups

