Elestio Terraform
provider

The Elestio Terraform provider is a plugin that enables users to manage resources on the Elestio
platform using Terraform.

Terraform is a tool that allows users to define and manage infrastructure as code, enabling them to

automate the process of creating, updating, and deleting resources such as virtual machines,
networks, and containers. It is open-source and developed by HashiCorp.

Documentation

Get started

Providers, datacenters and server types

Import an existing resource

Documentation

With Elestio’s Terraform provider, you can use an open-source infrastructure as code software tool
to declare and manage your cloud services.

Providers elestio elestio Version 0.3.0 ~ | Latest Version

elestio Overview Documentation Settings @ USE PROVIDER ~

ELESTIO DOCUMENTATION Elestio Provider (5] ON THIS PAGE
Example Usage
&‘lesriu Authentication

Schema

elestio provider Secrets and Terraform state

Elestio is a fully managed DevOps platform to deploy your code and open-source software.
~ Guides

get-started The Elestio Provider allows you to deploy your services with Terraform. You must have an Repart an issue

active account with Elestio. Pricing and Signup infermations can be found on Elestio website

~ Resources https://elest.io/.

elestio_ackee

clestio_affine — The navigation menu to the left provides details about the resources that you can interact

elestio sirbyte with (Resources), and a guide (Guides) for how you can get started.
elestio_airflow

elestio_answer Example Usage

elestio_appsmith
elestio_appwrite

Terraform .13 and later:
elestio_archivebox

elestio_authentik
- terraform {
elestio_azuracast required_providers {

. elestio = {
elestio_baserow

source = "elestiofelestio”
elestio_bookstack version = "@.2.8" # check out the latest version in the release section
elestio_browserless }
¥
elestio_bicpay 3

elestio_budibase
X X # Configure the provider
elestio_canopsis) . .
provider "elestioc” {
elestio_cassandra email = "<elestio_email»"

elestio_castopod api_token = "<elestio_api_token>

See the Elestio Terraform provider documentation to learn about the services and resources,

and visit the GitHub repository to report any issues or contribute to the project.

https://www.terraform.io/
https://registry.terraform.io/providers/elestio/elestio/latest/docs
https://registry.terraform.io/providers/elestio/elestio/latest/docs
https://github.com/elestio/terraform-provider-elestio

Get started

Build your first Elestio Terraform project

This exemple shows the setup for a Terraform project containing a single PostgreSQL service, and
shows off some useful commands to stand up (and destroy) your Elestio infrastructure.

You can check this repository elestio-terraform-scratch that contain the final code of this guide.

Prepare the dependencies

e Sign up for Elestio if you haven't already

e Get your API token in the security settings page of your account

e Download and install Terraform

You need a Terraform CLI version equal or higher than v0.14.0.
To ensure you're using the acceptable version of Terraform you may run the following

command:

terraform -v

Your output should resemble:

Terraform v0.14.0 # any version >= v0.14.0 is OK

Configure your project and services

Terraform files are used to define the structure and configuration of your infrastructure. It is
generally a good idea to keep these definitions in separate files rather than combining them all in

one file.

This section will explain how to organize a basic Terraform project :

https://github.com/elestio-examples/elestio-terraform-scratch
https://dash.elest.io/signup
https://dash.elest.io/account/security
https://www.terraform.io/downloads

1. Create and move to an empty folder

Here is an overview of the files we will create together :

|- outputs.tf{T1# Defines the outputs you want terraform extract

|- postgres.tf[T1# Defines the PostgreSQL service

|- project.tf{T}# Defines the Elestio project that will contain the PostgreSQL service
|- provider.tf[T# Defines the Elestio provider for Terraform

|- secret.tfvars[J# Defines the sensitive variables values

|- variables.tf [# Defines the variables required in other .tf files

2. Create a file provider.tf and declare the provider adding the following lines :

provider.tf

terraform {
required_providers {
elestio = {
source = "elestio/elestio"
version = "0.3.0" # check out the latest version available
}
}
}

Configure the Elestio Provider
provider "elestio" {
email = var.elestio_email
api_token = var.elestio_api_token

}

As you can see, the email and API token are assigned to variables.
You should never put sensitive information directly in .tf files.

3. Create a file variables.tf and declare variables adding the following lines :

variables.tf

variable "elestio_email" {

description = "Elestio Email"

type = string
}

variable "elestio_api_token" {
description = "Elestio APl Token"
type = string
sensitive = true

}

This file does not contain the values of these variables. We will have to declare them in
another file.

4. Create a file secret.tfvars and fill it with your values :

secret.tfvars

elestio_email = "YOUR-EMAIL"
elestio_api_token = "YOUR-API-TOKEN"

Do not commit with Git this file ! Sensitive information such as an API token should
never be pushed.

For more information on how to securely authenticate, please read the authentication

documentation.

5. Create a file project.tf and add the following lines :

project.tf

Create a Project

resource "elestio_project" "pg_project" {
name = "PostgreSQL Project"
description = "Contains a postgres database"

technical_emails = var.elestio_email

}

To contain our PostgreSQL service, we will have to create a new project on Elestio.
Instead of using the web interface, we can also declare it via terraform.

https://registry.terraform.io/providers/elestio/elestio/latest/docs#authentication
https://registry.terraform.io/providers/elestio/elestio/latest/docs#authentication

6. Create a file postgres.tf and add the following lines :

postgres.tf

Create a PostgreSQL Service

resource "elestio_postgresql" "pg_service" {
project id = elestio_project.pg_project.id
server_name = "pg-service"
server_type = "SMALL-1C-2G"

provider_name = "hetzner"

datacenter = "fsnl"

support_level = "levell"

admin_email = var.elestio_email
}

Terraform takes care of managing the dependencies and creating the different resources
in the right order. As you can see, project_id will be filled with the value of the Project
Resource that will be created with the previously project.tf file.

7. Create a file outputs.tf and add the following lines :

outputs.tf

output "pg_service_psqgl_command" {

Ovalue = elestio_postgresql.pg_service.database_admin.command
(description = "The PSQL command to connect to the database."
[sensitive = true

}

Apply the Terraform configuration

1. Download and install the Elestio provider defined in the configuration :

terraform init

2. Ensure the configuration is syntactically valid and internally consistent:

terraform validate

3. Apply the configuration :

terraform apply -var-file="secret.tfvars"

Deployment time varies by service, provider, datacenter and server type.

4. Voila, you have created a Project and PostgreSQL Service using Terraform !

You can visit the Elestio web dashboard to see these ressources.

(Optional) Access to the database

Let's try to connect to the database to see if everything worked well

First, you need to install psql.

After that, run this command :

eval "$(terraform output -raw pg_service_psql_command)"

Note: The command to leave psql terminal is \q

Clean up

Run the following command to destroy all the resources you created:

terraform destroy -var-file="secret.tfvars"

This command destroys all the resources specified in your Terraform state. terraform destroy doesn't
destroy resources running elsewhere that aren't managed by the current Terraform project.

Now you've created and destroyed an entire Elestio deployment!

Visit the Elestio Dashboard to verify the resources have been destroyed to avoid unexpected

charges.

https://dash.elest.io/
https://www.timescale.com/blog/how-to-install-psql-on-mac-ubuntu-debian-windows/
https://dash.elest.io/

Providers, datacenters and
server types

This guide explain how to find available options for provider_name, datacenter and
server_type variables when you want to manage a service resource with terraform :

resource "elestio_vault" "my_vault" {

provider_name = "hetzner"
datacenter = "fsnl"

server_type = "SMALL-1C-2G"

As this information can be updated often, we cannot put a fixed list in this documentation.
You will learn how to get this information from the Elestio website.

Instructions

When you create a service via the website, all three pieces of information (providers, data
centers, and server types) are listed on a single page. You can copy the configuration from
there and paste it into your Terraform file.

1 Navigate to https://elest.io/

https://elest.io/

2 Login to the dashboard

Join our Discord Documentation Contact

Managed services Features = Pricing About Login

s platform to deploy your
I-source software

on-premise. Scalable & Secure. CI/CD Pipelines.

' VULTR HETZNER vlinode (@) Scaleway ON-PREMISE

3 Click on the button "Deploy my first service"

e Iesl-i{-‘I Current Services

dedwait-progect

@ Nk . L -:-h

Start by Creating a service

Sabect ywour services, cloud provide TEgion, and other specs.

7146

0,004 hour

4 Search service by name

Create Service

fio

° Salect service

Databases Applications Development Hosting & Infra

Bearch service by name

PostgreSQL

PosigreSQL is a powerful, open-source object-relational
database system, known for reliability, data integrity and
performance.

Details

ColumnStore
MariaDB ColumnStore is a GPLvZ open-source columnar

Aatabare Rl an LiadaME Sanoe

=

5 Select the service

ack clfcD Al

2 Select provider, region & service pl

Full Stack Cifco All

MySQL

MySQL is an Oracle-backed open-£
on almast all platforms.

AN

. MongoDB
MongoDEB is a document-oriented b

Ik vamdierme data phaeame

Q Filter Services +~

Vault

A4

sosted and run on

Vault is a tool for secrets management, encryption as a service, and privileged access management

Details

6 Choose the provider

o Enlect sarvice o Salect provider, region B service plan

1. Select Service Cloud Provider

HETZNER

9 {] p W VULTR Snu@»w aW§

DigitalOcean | jghtsail linode

2. Sedect Service Cloud Region

Eurapa Marth Amaerica

fami

W Garmany - Falkarabein

hed?

== Finlande - Halsini

nbg1

B Germany - Nurembeng

3. Salect Sarvice Plan

7 Choose a datacenter

%" Load Balancer

oo CI/COo

& Domairs

& Members

i Project Setting

= Audit Tral

8 Accounl

& Support Tickets

B Documantation

746
$0.000/hour
A lits

2. Sedect Service Cloud Region

Europe

fr-par-1
0 | France - Paris

fr-par-2
01 I France - Paris

fr-par-3

0 I France - Paris

nl-ams-1
= Matharlinds - Amsterdam

nil-ams-2
- Matheriands - Amsterdam

plwaw-1

- Poland - Warsse

olwew-2

3 Selact Support & advanced satting

A4

Vault

Varsion

113.3 (09-08-2023)

Hatzner Cloud

Region
Europe, Germany
Falkenstein

SMALL-1C-2G

1EPU

2.CB RAM

20 GB Storage
20 TE Bandwidth
7 Bemcie Backeps
Il Kaon

Fulty Maaged

il

Estimaind Monthly Prica

11331

Scale

Europ
Paris

s29

*Estim
730 he

8 Choose a server type

- plwaw-2

== Poland - Warsaw
& Domains
& Mambars 3. Select Service Plan
Billing

SMALL-2C-2G

@ Project Satting

§2CPU E32GERAM & 10GE-10TE Storage @ 200 Mbps Bandwidth included Il Intel Xeon

i= Audit Trail

MEDIUM-3C-4G
B Ao §3CPU EX4GEBRAM & 10GB- 1078 Storage @8 300 Mbps Bandwidth included il Intel Xeon
& Support Tickets

LARGE-4C-8G

B Documentation

XMLARGE-4C-12G

$4CPU ENSGERAM & 10 GB- 10 TB Storage @ 400 Mbps Bandwidth included §F Intal Xeon

$4icPu B2 GBRAM & 10 GB- 10 T Storage @ 500 Mbps Bandwidth included 4 Intel Xeon

XLARGE-4C-16G

9 Select a software version

371.48 #4CPU I3 16 GBRAM & 10 GE - 10 TB Storage @8 T00 Mbgs Bandwidih included 3 Intel Xeon

\4

Sarvice
Vault
Version

113.3 (09-08-2023)
Provider
Scaleway Cloud
Region
Europe, Netherlands
Amsterdam
Plan
MEDIUM-3C-4G
& 3CPU
B 4GB RAM

& 20 GB Storage
& 300 Mbps Bandwidth
B Mo Volume

https://docs.elest.io/uploads/images/gallery/2023-10/cleanshot-2023-10-03-at-12-57-20.png

10 Click "Copy Terraform Config"

Support

icluded I Intel Xeon Levell

Estimated Monthly Price®
$46

icluded JF Intel Xeon *Estimated monthly price is based on
730 hours of usage.

. S Xa Copy Terraform Cenfig [©

included I Intel Xeon

luded ¥ Intel Xeon

11 Copy the config and paste it in your terraform file

1 with Elestio.

resource "elestio_vault”™ "exomple” {
project_id "596"
Server_name "wault-Gkwib”
version *1.15.3"
provider_name = "scaleway”
datacenter "nl-ams-1"
server_type "MEDIUM-3C-4G"

[© Copy Config

Import an existing resource

You can use the terraform import command to import in the Elestio state an existing project or
service already running.

Project

Import a project by specifying the project ID.

terraform import elestio_project.myawesomeproject project_id

1. Declare the resource in your terraform file

resource "elestio_project" "example_project" {

name = "example-project"

2. Retrieve your ProjectIiD on the projects list page.

All Projects

Search Projects by name

D Mame Ownership
596 default-project Yes
2434 example-project Yes

3. Execute the import command

terraform import elestio_project.exemple_project 2434

Then you can run a terraform apply command and Terraform will handle your project
resource as an update and not a new resource to create.

https://dash.elest.io/projects
https://docs.elest.io/uploads/images/gallery/2023-01/screenshot-2023-01-08-at-02-01-12.png

Service

Import a service by specifying the Project ID it belongs to, and the service ID (spaced by a comma).

terraform import elestio_service.myawesomeservice project_id,service_id

1. Declare the resource in your terraform file

resource "elestio_postgres" "exemple_postgres" {

project id = elestio_project.exemple_project.id

2. Retrieve your ProjectIiD on the projects list page.

3. Retrieve your ServicelD on the service page.

0OS auto updates Enable/Disable auto updates
Deployment duration 222s

Service ID 27265610 [0

Created By You

4. Execute the import command

terraform import elestio_postgres.exemple_postgres 2434,27265610

Then you can run a terraform apply command and Terraform will handle your service
resource as an update and not a new resource to create.

https://dash.elest.io/projects
https://docs.elest.io/uploads/images/gallery/2023-01/screenshot-2023-01-08-at-02-04-26.png

