
This exemple shows the setup for a Terraform project containing a single PostgreSQL service, and
shows off some useful commands to stand up (and destroy) your Elestio infrastructure.

You can check this repository elestio-terraform-scratch that contain the final code of this guide.

Sign up for Elestio if you haven't already

Get your API token in the security settings page of your account

Download and install Terraform

You need a Terraform CLI version equal or higher than v0.14.0.
To ensure you're using the acceptable version of Terraform you may run the following
command:

Your output should resemble:

terraform -v

Terraform v0.14.0 # any version >= v0.14.0 is OK
...

Terraform files are used to define the structure and configuration of your infrastructure. It is
generally a good idea to keep these definitions in separate files rather than combining them all in
one file.

This section will explain how to organize a basic Terraform project :

Get started

Build your first Elestio Terraform project

Prepare the dependencies

Configure your project and services

https://github.com/elestio-examples/elestio-terraform-scratch
https://dash.elest.io/signup
https://dash.elest.io/account/security
https://www.terraform.io/downloads

1. Create and move to an empty folder

Here is an overview of the files we will create together :

|- outputs.tf		# Defines the outputs you want terraform extract
|- postgres.tf		# Defines the PostgreSQL service
|- project.tf		# Defines the Elestio project that will contain the PostgreSQL service
|- provider.tf		# Defines the Elestio provider for Terraform
|- secret.tfvars	# Defines the sensitive variables values
|- variables.tf 	# Defines the variables required in other .tf files

2. Create a file provider.tf and declare the provider adding the following lines :

As you can see, the email and API token are assigned to variables.
You should never put sensitive information directly in .tf files.

provider.tf

terraform {
 required_providers {
 elestio = {
 source = "elestio/elestio"
 version = "0.3.0" # check out the latest version available
 }
 }
}

Configure the Elestio Provider
provider "elestio" {
 email = var.elestio_email
 api_token = var.elestio_api_token
}

3. Create a file variables.tf and declare variables adding the following lines :

variables.tf

variable "elestio_email" {
 description = "Elestio Email"

This file does not contain the values of these variables. We will have to declare them in
another file.

 type = string
}

variable "elestio_api_token" {
 description = "Elestio API Token"
 type = string
 sensitive = true
}

4. Create a file secret.tfvars and fill it with your values :

Do not commit with Git this file ! Sensitive information such as an API token should
never be pushed.
For more information on how to securely authenticate, please read the authentication
documentation.

secret.tfvars

elestio_email = "YOUR-EMAIL"
elestio_api_token = "YOUR-API-TOKEN"

5. Create a file project.tf and add the following lines :

To contain our PostgreSQL service, we will have to create a new project on Elestio.
Instead of using the web interface, we can also declare it via terraform.

project.tf

Create a Project
resource "elestio_project" "pg_project" {
 name = "PostgreSQL Project"
 description = "Contains a postgres database"
 technical_emails = var.elestio_email
}

https://registry.terraform.io/providers/elestio/elestio/latest/docs#authentication
https://registry.terraform.io/providers/elestio/elestio/latest/docs#authentication

6. Create a file postgres.tf and add the following lines :

Terraform takes care of managing the dependencies and creating the different resources
in the right order. As you can see, project_id will be filled with the value of the Project
Resource that will be created with the previously project.tf file.

postgres.tf

Create a PostgreSQL Service
resource "elestio_postgresql" "pg_service" {
 project_id = elestio_project.pg_project.id
 server_name = "pg-service"
 server_type = "SMALL-1C-2G"
 provider_name = "hetzner"
 datacenter = "fsn1"
 support_level = "level1"
 admin_email = var.elestio_email
}

7. Create a file outputs.tf and add the following lines :

outputs.tf

output "pg_service_psql_command" {
	value = elestio_postgresql.pg_service.database_admin.command
	description = "The PSQL command to connect to the database."
	sensitive = true
}

1. Download and install the Elestio provider defined in the configuration :

terraform init

2. Ensure the configuration is syntactically valid and internally consistent:

Apply the Terraform configuration

terraform validate

3. Apply the configuration :

Deployment time varies by service, provider, datacenter and server type.

terraform apply -var-file="secret.tfvars"

4. Voila, you have created a Project and PostgreSQL Service using Terraform !
You can visit the Elestio web dashboard to see these ressources.

Let's try to connect to the database to see if everything worked well

First, you need to install psql.

After that, run this command :

Note: The command to leave psql terminal is \q

Run the following command to destroy all the resources you created:

This command destroys all the resources specified in your Terraform state. terraform destroy doesn't
destroy resources running elsewhere that aren't managed by the current Terraform project.

Now you've created and destroyed an entire Elestio deployment!

Visit the Elestio Dashboard to verify the resources have been destroyed to avoid unexpected
charges.

(Optional) Access to the database

eval "$(terraform output -raw pg_service_psql_command)"

Clean up

terraform destroy -var-file="secret.tfvars"

https://dash.elest.io/
https://www.timescale.com/blog/how-to-install-psql-on-mac-ubuntu-debian-windows/
https://dash.elest.io/

Revision #16
Created 30 December 2022 13:47:34 by Adam
Updated 3 January 2023 00:35:11 by Adam

