
To make your services accessible over Tor, you can configure a Tor service within your service
Docker Compose setup. This will allow your service to function as an onion site, providing
enhanced privacy and limiting access to Tor-compatible browsers. Here’s a guide to setting up your
service with Tor on Elestio.

First, deploy a new service on Elestio or select an existing one you’ve already deployed.

Navigate to the Tools tab within your service and open the provided VS Code editor.

To stop the current container, run the following command:

You’ll need to add a Tor service to your Docker Compose file. Below is an example Docker
Compose configuration to run a nextcloud server accessible through a Tor onion address.

How to Deploy or Integrate a
Service with Tor Onion on
Elestio

Step 1: Set Up Your Service

Step 2: Open the Editor

Step 3: Stop the Current Container

docker-compose down -v;

Step 4: Configure Docker Compose with Tor

version: "3.9"
services:
  app:
    image: elestio/nextcloud:${SOFTWARE_VERSION_TAG}
    restart: always
    # ports:
    #   - 172.17.0.1:22000:80
    volumes:



In the root directory of your project, create a file named torrc . This file configures Tor to run as a
hidden service and specifies the settings for connecting to the web service.

Add the following content to torrc :

      - ./nextcloud:/var/www/html
      - ./apps:/var/www/html/custom_apps
      - ./config:/var/www/html/config
      - ./data:/var/www/html/data
  tor:
    image: jakejarvis/tor:latest
    restart: unless-stopped
    volumes:
      - ./tor-data:/var/lib/tor/
      - ./torrc:/etc/tor/torrc:ro
    depends_on:
      - app
volumes:
  tor-data:

In the Docker Compose example, we used the `jakejarvis/tor` image to demonstrate the
setup, but you can substitute it with any other official or custom Tor image that suits your
needs. This allows for flexibility in using a Tor configuration that aligns with specific
requirements or preferences.

Step 5: Create the  torrc  File

# This folder contains the public and private keys of the hidden
# service, probably provided by the host but can also be generated
# by Tor if it's missing.
HiddenServiceDir /var/lib/tor/hidden_service

# Point the hidden service to a web server (in this case, the web
# server container listening on port 80).
HiddenServicePort 80 app:80

# SOCKS proxy is only used for the container's internal healthcheck.
SocksPort 127.0.0.1:9050

Step 6: Start the service.



Revision #5
Created 8 November 2024 09:26:07 by Amit
Updated 8 November 2024 10:25:16 by Amit

To start your services, use the following commands:

This will bring up both the app and Tor services, allowing Tor to generate the necessary onion
address.

Once your services are running, Tor will create an onion address for your service. You can find this
address by accessing the hostname  file in the tor-data/hidden_service  directory. Use the following
command to view your onion URL:

This will output an onion address (like abcdefghijklmno.onion ) that you can use to access your web
service in a Tor-compatible browser like Tor Browser or Brave.

If your application has domain or URL settings in its environment variables or configurations,
replace the current URL with your Tor onion URL. This ensures that your application will direct users
to the onion address.

To restrict access exclusively to the Tor network and block regular web traffic, you can disable
external access by blocking port 443 in your security firewall settings. This can be configured
through the firewall settings within the Security tab of your service, or via your cloud provider's
firewall if using a BYOVM (Bring Your Own Virtual Machine).

With these steps, you’ve configured your Elestio-deployed service to be accessible through a Tor
onion address. This setup allows for private, anonymous access via Tor, enhancing your service's
privacy and security.

docker-compose up -d;

Step 7: Obtain Your Onion URL

cat tor-data/hidden_service/hostname

Step 8: Update Service URL with Onion URL

Optional: Disable Access to the Public Internet

Summary


