
Manual Migrations using Hydra’s built-in tools pg_dump and pg_restore are ideal for users who prefer
full control over data export and import, particularly during provider transitions, database version
upgrades, or when importing an existing self-managed Hydra dataset into Elestio’s managed
environment. This guide walks through the process of performing a manual migration to and from
Elestio Hydra services using command-line tools, ensuring that your data remains portable,
auditable, and consistent.

Manual migration using pg_dump and pg_restore is well-suited for scenarios where full control over
the data export and import process is required. This method is particularly useful when migrating
from an existing Hydra setup, whether self-hosted, on-premises, or on another cloud provider, into
Elestio’s managed Hydra service. It allows for one-time imports without requiring continuous
connectivity between source and target systems.

This approach is also ideal when dealing with version upgrades, as Hydra's logical backups can be
restored into newer versions without compatibility issues. In situations where Elestio’s built-in
snapshot or replication tools aren’t applicable such as migrations from isolated environments or
selective schema transfers, manual migration becomes the most practical option. Additionally, this
method enables users to retain portable, versioned backups outside of Elestio’s infrastructure,
which can be archived, validated offline, or re-imported into future instances.

Before initiating a migration, verify that Hydra is properly installed and configured on both the
source system and your Elestio service. On the source, you need an active Hydra instance with a
user account that has sufficient privileges to read schemas, tables, sequences, and any installed
extensions. The user must also be allowed to connect over TCP if the server is remote.

On the Elestio side, provision a Hydra service from the dashboard. Once deployed, retrieve the
connection information from the Database admin tab. This includes the hostname, port, database
name, username, and password. You’ll use these credentials to connect during the restore step.
Ensure that your IP is allowed to connect under the Cluster Overview > Security > Limit access per

Manual Migration Using
pg_dump and pg_restore

When to Use Manual Migration

Performing the Migration
Prepare the Environments

IP section; otherwise, the Hydra port will be unreachable during the migration.

In this step, you generate a logical backup of the source database using pg_dump. This utility
connects to the Hydra server and extracts the structure and contents of the specified database. It
serializes tables, indexes, constraints, triggers, views, and functions into a consistent snapshot. The
custom format (-Fc) is used because it produces a compressed binary dump that can be restored
selectively using pg_restore.

This command connects to the source server (-h), authenticates with the user (-U), targets the
database (source_database), and exports the entire schema and data into backup.dump. The
resulting file is portable and version-aware. You can also add --no-owner and --no-acl If you’re
migrating between environments that use different database roles or access models. This prevents
restore-time errors related to ownership mismatches.

If your source and target environments are on different hosts, the dump file must be transferred
securely. This step ensures the logical backup is available on the system from which you’ll perform
the restore. You can use secure copy (scp), rsync, or any remote file transfer method.

If restoring from your local machine to Elestio, ensure the dump file is stored in a location readable
by your current shell user. Elestio does not require the file to be uploaded to its servers; the restore
is performed by connecting over the network using standard Hydra protocols. At this point, your
backup is isolated from the source environment and ready for import.

Create a Dump Using pg_dump

pg_dump -U <source_user> -h <source_host> -p <source_port> -Fc <source_database> > backup.dump

Transfer the Dump File to the Target

scp backup.dump your_user@your_workstation:/path/to/local/

Create the Target Database

https://docs.elest.io/uploads/images/gallery/2025-05/EWNimage.png

By default, Elestio provisions a single database instance. However, if you wish to restore into a
separate database name or if your dump references a different name, you must create the new
database manually. Use the psql client to connect to your Elestio service using the credentials from
the dashboard.

Within the psql session, create the database:

This ensures that the new database has consistent encoding and locale settings, which are critical
for text comparison, sorting, and indexing. Using template0 avoids inheriting default extensions or
templates that might conflict with your dump file. At this stage, you can also create any roles,
schemas, or extensions that were used in the original database if they are not included in the
dump.

With the target database created and the dump file in place, initiate the restoration using
pg_restore. This tool reads the custom-format archive and reconstructs all schema and data objects
in the new environment.

This command establishes a network connection to the Elestio Hydra service and begins issuing
CREATE, INSERT, and ALTER statements to rebuild the database. The --verbose flag provides real-time
feedback about the objects being restored. You can also use --jobs=N to run the restore in parallel,
improving performance for large datasets, provided the dump was created with pg_dump --jobs=N .

It’s important to ensure that all referenced extensions, collations, and roles exist on the target
instance to avoid partial restores. If errors occur, the logs will point to the missing components or
permission issues that need to be resolved.

Once the restore completes, you must validate the accuracy and completeness of the migration.
Connect to the Elestio database using psql or a Hydra GUI (such as pgAdmin or TablePlus), and run
checks across critical tables.

Begin by inspecting the table existence and row counts:

psql -U <elestio_user> -h <elestio_host> -p <elestio_host> -d postgres

CREATE DATABASE target_database WITH ENCODING='UTF8' LC_COLLATE='en_US.UTF-8'

LC_CTYPE='en_US.UTF-8' TEMPLATE=template0;

Restore Using pg_restore

pg_restore -U elestio_user -h elestio_host -p 5432 -d target_database -Fc /path/to/backup.dump

--verbose

Validate the Migration

Revision #2
Created 8 May 2025 05:18:51 by kaiwalya
Updated 12 May 2025 10:54:47 by kaiwalya

Validate views, functions, and indexes, especially if they were used in reporting or application
queries. Run application-specific health checks, reinitialize ORM migrations if applicable, and
confirm that the application can read and write to the new database without errors.

If you made any changes to connection strings or credentials, update your environment variables
or secret managers accordingly. Elestio also supports automated backups, which you should enable
post-migration to protect the restored dataset.

Manual Hydra migration using pg_dump and pg_restore on Elestio provides several key advantages:

Compatibility and Portability: Logical dumps allow you to migrate from any
Hydra/PostgreSQL-compatible source into Elestio, including on-premises systems, Docker
containers, or other clouds.
Version-Safe Upgrades: The tools support migrating across Hydra versions, which is
ideal during controlled upgrades.
Offline Archiving: Manual dumps serve as portable archives for cold storage, disaster
recovery, or historical snapshots.
Platform Independence: You retain full access to Hydra native tools without being
locked into Elestio-specific formats or interfaces.

This method complements Elestio’s automated backup and migration features by enabling custom
workflows and one-off imports with full visibility into each stage.

\dt

SELECT COUNT(*) FROM your_important_table;s

Benefits of Manual Migration

