
Creating a Realm in Keycloak
Adding and Managing Users in Keycloak
Creating and Configuring Clients in Keycloak
Setting Up Roles and Permissions in Keycloak
Enabling Identity Federation in Keycloak
Enabling Two-Factor Authentication (2FA) in Keycloak
Resetting User Passwords in KeycloakNew Page

How-To Guides

A realm in Keycloak is the top-level container for managing users, roles, groups, identity providers,
and applications. It provides complete logical isolation, making it ideal for multi-tenant systems or
staging/production splits. This guide explains different ways to create a realm via the Admin
Console, REST API, and Docker CLI while covering permissions, best practices, and troubleshooting.

The Admin Console is the most straightforward way to create and manage realms using a web-
based UI.

Log in to your Keycloak Admin Console:

Use the admin account created during setup or one with realm management privileges.

Creating a Realm in Keycloak

Creating a Realm via Keycloak
Admin Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

https://docs.elest.io/uploads/images/gallery/2025-06/q4uimage.png

1. Click the realm dropdown in the top-left corner (default is master).
2. Click Create Realm.
3. Enter the following details:

Realm Name: A unique name like customer-portal or internal-tools.
Display Name: Optional friendly name shown on login screens.

4. Click Create.

Once created, you can adjust behavior by navigating to

Realm Settings > Login: Enable email verification, OTP, remember-me, etc.
Realm Settings > Themes: Set custom themes for login and account pages

For automation and CI/CD pipelines, use the Admin REST API.

Use the master realm or a privileged realm with an admin user.

Save the access_token from the response.

Create a New Realm

Configure Realm Settings

Creating a Realm via Keycloak REST
API

Get Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Create the Realm

curl -X POST "https://<keycloak-domain>/admin/realms" \

 -H "Content-Type: application/json" \

 -H "Authorization: Bearer <access_token>" \

 -d '{

This creates a new realm called newrealm with default settings.

If Keycloak is running inside a Docker container:

1. Create a JSON realm file (e.g., myrealm.json):

2. Run Keycloak with the import flag:

Or via Docker:

Users must have manage-realm or admin roles in the master realm.
If using the REST API, token must be obtained using admin-cli.

To grant permissions:

 "realm": "newrealm",

 "enabled": true,

 "displayName": "New Realm"

 }'

Creating a Realm via Docker CLI

Access the Container

docker exec -it keycloak bash

Create Realm Using Import File

{

 "realm": "myrealm",

 "enabled": true

}

kc.sh import --file /opt/keycloak/data/import/myrealm.json

docker run -v $PWD:/opt/keycloak/data/import \

 quay.io/keycloak/keycloak:latest \

 import --file /opt/keycloak/data/import/myrealm.json

Required Permissions for Realm Creation

Use Descriptive Realm Names: Avoid generic names like test or default. Use
environment- or tenant-specific names like dev-project-x, production-client123.
Enable Login Hardening Features: Under Realm Settings > Login:

Enable email verification
Disable user registration (unless required)
Enable OTP for 2FA

Use Theme Branding: Upload and assign a custom login theme under Themes to
reflect client or environment branding.
Automate via REST or Terraform: For CI/CD deployments, automate realm
provisioning using REST API or tools like Terraform (mrparkers/keycloak provider).

Issue Possible Cause Solution

403 Forbidden when creating via API Access token lacks permission Ensure token is generated from a user
with admin role in master realm

Realm already exists Attempting to recreate an existing
realm

Use a different realm name or delete
existing one before re-creating

Realm not listed in dropdown Misconfiguration or missing role Refresh UI or check admin user’s
permissions

Docker import doesn’t create realm File format error or wrong path Ensure JSON is valid and mounted
correctly in /opt/keycloak/data/import

Login page shows default theme Custom theme not set Go to Realm Settings > Themes
and set your theme manually

From master realm

Users > admin > Role Mappings > Realm Roles > Assign 'admin'

Best Practices for Creating Realms

Common Issues and
Troubleshooting

Users in Keycloak represent the individuals or system accounts that authenticate and interact with
your applications. This guide explains multiple methods to create and manage users via the Admin
Console, REST API, and Docker CLI while covering required roles, best practices, and common
issues.

The Admin Console is the most user-friendly method to manage users and assign roles.

Log in to your Keycloak Admin Console:

Choose the realm where you want to manage users.

1. Go to Users > Add User
2. Fill in the following:

Username (required)
Email, First Name, Last Name (optional but recommended)
Set Email Verified if applicable

3. Click Create

Adding and Managing Users in
Keycloak

Creating Users via Keycloak Admin
Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

Add a New User

After creating the user:

1. Go to the Credentials tab
2. Set a password
3. Toggle Temporary to OFF if you don’t want the user to reset on first login
4. Click Set Password

This method is suitable for CI/CD pipelines or automated scripts.

Set Credentials

Creating Users via Keycloak REST
API

Get Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

https://docs.elest.io/uploads/images/gallery/2025-06/Sdmimage.png

Copy the access_token from the response.

To get <user-id>, call:

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Create User

curl -X POST "https://<keycloak-domain>/admin/realms/<realm>/users" \

 -H "Content-Type: application/json" \

 -H "Authorization: Bearer <access_token>" \

 -d '{

 "username": "johndoe",

 "email": "johndoe@example.com",

 "enabled": true,

 "emailVerified": true,

 "firstName": "John",

 "lastName": "Doe"

 }'

Set Password

curl -X PUT "https://<keycloak-domain>/admin/realms/<realm>/users/<user-id>/reset-password" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "type": "password",

 "value": "StrongPassword123!",

 "temporary": false

 }'

curl -H "Authorization: Bearer <access_token>" \

 https://<keycloak-domain>/admin/realms/<realm>/users?username=johndoe

Creating Users via Docker CLI
Step into the Container

Requires manage-users role in the realm.
Admin token used via CLI or REST must be scoped with user management privileges.

To assign permission via Admin Console:

Use Verified Emails

Ensure emailVerified is set to true for pre-created users to skip email confirmation.

Avoid Temporary Passwords for API Imports

If scripting user creation, set temporary: false to avoid forcing password reset on first login.

Group Users by Role or Department

Organize users into groups (e.g., devs, sales, ops) for easier role management and policy
application.

Monitor Login History

Enable event logging to track user login activity under Events > Settings.

docker exec -it keycloak bash

Use Admin CLI Script

/opt/keycloak/bin/kcadm.sh config credentials --server http://localhost:8080 \

 --realm master --user admin --password admin

/opt/keycloak/bin/kcadm.sh create users -r <realm> -s username=jane -s enabled=true

Set Password

/opt/keycloak/bin/kcadm.sh set-password -r <realm> --username jane --new-password

"SecurePass!123"

Required Permissions for User Management

Users > admin > Role Mappings > Realm Roles > Assign 'manage-users'

Best Practices for Managing Users

Enforce Strong Passwords

Go to Authentication > Password Policy and configure rules like minimum length, digits, special
chars, etc.

Issue Possible Cause Solution

409 Conflict: User exists Username already taken Use a unique username or search
existing users

403 Forbidden on API Missing permission or token scope Ensure admin has manage-users in
the correct realm

User not able to log in Password not set or user is disabled Check status under the user’s profile
and verify credentials

Password reset fails Temporary password not set correctly Use "temporary": false if you want
permanent password via API

Email not received for verification SMTP not configured Go to Realm Settings > Email and
add SMTP server details

Common Issues and
Troubleshooting

A client in Keycloak represents an application or service that uses Keycloak to authenticate users.
Clients can be web apps, REST APIs, mobile apps, or even CLI tools. This guide explains how to
create and configure clients through the Admin Console, REST API, and CLI (Docker), and also
includes roles, best practices, and common troubleshooting steps.

This is the simplest way to register and configure a client visually.

Log in to:

Choose the realm where the client should be added.

1. Go to Clients > Create
2. Fill in the fields:

Client ID: A unique name, e.g., frontend-app or api-service
Client Type: Choose between OpenID Connect (default) or SAML
Root URL: The application base URL (e.g., http://localhost:3000)

Creating and Configuring Clients
in Keycloak

Creating Clients via Keycloak Admin
Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

Add a New Client

3. Click Next, then Save

Go to the Settings tab for the client:

Access Type: Choose public, confidential, or bearer-only
Valid Redirect URIs: Add allowed redirect URLs (e.g., http://localhost:3000/*)
Web Origins: Add * or specific origins allowed to call this client
Standard Flow Enabled: Enable for browser-based login
Direct Access Grants: Enable if using password grant from API

Save the changes

Configure Client Settings

Creating Clients via Keycloak REST
API
Get Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

https://docs.elest.io/uploads/images/gallery/2025-06/gqaimage.png

Save the access_token.

This creates a confidential client named my-app.

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Create a Client

curl -X POST "https://<keycloak-domain>/admin/realms/<realm>/clients" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "clientId": "my-app",

 "enabled": true,

 "publicClient": false,

 "redirectUris": ["http://localhost:3000/*"],

 "webOrigins": ["http://localhost:3000"],

 "protocol": "openid-connect"

 }'

Creating Clients via Docker CLI
Step into the Container

docker exec -it keycloak bash

Authenticate and Create Client

/opt/keycloak/bin/kcadm.sh config credentials \

 --server http://localhost:8080 \

 --realm master --user admin --password admin

/opt/keycloak/bin/kcadm.sh create clients -r <realm> \

 -s clientId=my-cli-client \

 -s enabled=true \

 -s publicClient=false \

 -s redirectUris='["http://localhost:3000/*"]' \

Requires manage-clients or admin role in the realm
Token used via REST or CLI must be scoped to allow client creation

To grant roles via Admin Console:

Use Confidential Clients for Backends: Set publicClient = false and use client_secret
for server-to-server communication.
Use Public Clients for SPAs: Frontend apps using redirect flows should be marked as
publicClient = true.
Set Narrow Redirect URIs: Avoid using wildcards like * unless absolutely necessary.
Use precise URIs for better security.
Limit Token Lifespans: Go to Realm Settings > Tokens and configure access and
refresh token lifetimes.
Rotate Client Secrets Regularly: Manually rotate secrets or use automation for higher
security compliance.
Use Roles and Mappers for RBAC: Assign client roles and use protocol mappers to
inject them into access tokens for authorization checks.

Issue Possible Cause Solution

Invalid redirect URI Redirect URI doesn’t match registered
value

Ensure exact match in Valid
Redirect URIs

Client not visible after creation UI or API delay Refresh or re-login to see updated
clients

Access token doesn’t include roles Missing mappers Add protocol mapper for client roles
under Client > Mappers

 -s webOrigins='["http://localhost:3000"]'

Required Permissions for Client Management

Users > admin > Role Mappings > Realm Roles > Assign 'manage-clients'

Best Practices for Client
Configuration

Common Issues and
Troubleshooting

Issue Possible Cause Solution

403 Forbidden when using client
credentials

Client type is public or secret is wrong Verify publicClient=false and check
the client secret

Invalid client credentials error Wrong client ID or secret Verify spelling and match values from
Admin Console

Roles and permissions in Keycloak define what users and applications are allowed to do. Roles can
be assigned to users, groups, or clients, and are embedded into access tokens to enforce
authorization. This guide explains how to define and manage roles via the Admin Console, REST
API, and CLI, with best practices and common issues.

This is the easiest way to create and manage roles visually.

Log in to:

Choose the appropriate realm.

1. Go to Roles > Add Role
2. Enter:

Role Name: e.g., admin, viewer, editor
Description: Optional but recommended

3. Click Save

Setting Up Roles and
Permissions in Keycloak

Creating Roles via Keycloak Admin
Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

Create Realm Roles

1. Go to Clients > [client-name] > Roles > Create Role
2. Fill in the Role Name and optional Description
3. Save the role

1. Go to Users > [username] > Role Mappings
2. In Available Roles, choose from:

Realm roles (top-left dropdown)
Client roles (select client under “Client Roles”)

3. Click Add selected

Create Client Roles

Assign Roles to Users

https://docs.elest.io/uploads/images/gallery/2025-06/dvYimage.png
https://docs.elest.io/uploads/images/gallery/2025-06/cQIimage.png

Save the access_token.

Creating Roles via Keycloak REST
API
Get Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Create Realm Role

curl -X POST "https://<keycloak-domain>/admin/realms/<realm>/roles" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "name": "viewer",

 "description": "Read-only access"

 }'

https://docs.elest.io/uploads/images/gallery/2025-06/j8timage.png

To get the client ID:

Access the Container

Create Roles via CLI

To create client roles:

Create Client Role

curl -X POST "https://<keycloak-domain>/admin/realms/<realm>/clients/<client-id>/roles" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "name": "api-user",

 "description": "API access for clients"

 }'

curl -H "Authorization: Bearer <access_token>" \

 "https://<keycloak-domain>/admin/realms/<realm>/clients"

Creating Roles via Docker CLI

docker exec -it keycloak bash

/opt/keycloak/bin/kcadm.sh config credentials \

 --server http://localhost:8080 --realm master \

 --user admin --password admin

/opt/keycloak/bin/kcadm.sh create roles -r <realm> \

 -s name=auditor -s description="Can view reports"

/opt/keycloak/bin/kcadm.sh create clients/<client-id>/roles -r <realm> \

 -s name=external-api -s description="Role for external apps"

Required Permissions for Managing
Roles

To manage roles, users need:

manage-realm role for realm roles
manage-clients role for client-specific roles

To assign via Admin Console:

Use Fine-Grained Role Names: Use names like invoice_viewer, invoice_editor, or
admin_dashboard for clarity.
Use Groups to Assign Roles in Bulk: Create groups such as managers, sales, or
auditors, then assign roles to groups.
Map Roles to Access Tokens: Use Client > Mappers to include role names in the
access_token or id_token.
Prefer Client Roles for Application Permissions: Client roles are scoped to individual
apps and help separate responsibilities.
Use Composite Roles Sparingly: Composite roles combine multiple roles into one but
may add complexity if overused.

Issue Possible Cause Solution

Role doesn’t appear in token Missing protocol mapper Add a role mapper in Client >
Mappers

User not authorized despite role
assignment

Role not assigned to the correct
client/realm

Verify if the role is client-scoped or
realm-wide

403 Forbidden despite valid login Role not embedded in access token Ensure token includes required roles
via protocol mappers

REST API: 409 Conflict when creating
role

Role with same name already exists Use a unique name or update existing
role

Cannot assign role to user User lacks manage-users privilege Ensure admin has role assignment
rights

Users > [admin-user] > Role Mappings > Realm Roles > Add 'manage-realm' or 'manage-clients'

Best Practices for Roles and
Permissions

Common Issues and
Troubleshooting

Identity federation allows you to delegate authentication to external identity providers (IdPs) like
Google, GitHub, Facebook, or enterprise systems such as LDAP and Active Directory. This guide
explains how to integrate identity providers using the Keycloak Admin Console, REST API, and
Docker CLI (kcadm.sh). It includes configuration examples, permission requirements, best
practices, and common issues.

This method supports most popular providers like Google, GitHub, Facebook, and SAML/LDAP.

Log in to your Keycloak Admin Console:

Select the realm where you want to add the identity provider.

1. Go to Identity Providers > Add Provider
2. Choose an option like Google, GitHub, or OpenID Connect v1.0
3. Fill in the following:

Alias: A unique name like google or github
Client ID: From the external IdP
Client Secret: From the external IdP
Authorization URL, Token URL, User Info URL: Auto-filled for well-known
providers

4. Set Sync Mode (e.g., IMPORT, FORCE, or LEGACY)
5. Enable Store Tokens if you want offline access
6. Click Save

Enabling Identity Federation in
Keycloak

Adding Identity Providers via
Keycloak Admin Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

Add an Identity Provider (OIDC-based)

1. Go to the realm login page
2. You’ll now see a “Login with Google” or equivalent option

1. Go to User Federation > Add Provider → LDAP
2. Fill in connection details:

Field Example

Connection URL ldap://ldap.mycompany.com

Users DN ou=users,dc=mycompany,dc=com

Bind DN cn=admin,dc=mycompany,dc=com

Bind Credential Your LDAP password

Vendor Active Directory, Other, etc.

2. Choose Edit Mode: READ_ONLY, WRITABLE, or UNSYNCED
3. Enable Periodic Sync if needed
4. Save and test the connection

Test the Identity Provider

Adding LDAP or Active Directory

https://docs.elest.io/uploads/images/gallery/2025-06/ujPimage.png

Save the access_token.

Adding Identity Providers via REST
API
Get Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Add OIDC Identity Provider

curl -X POST "https://<keycloak-domain>/admin/realms/<realm>/identity-provider/instances" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "alias": "google",

 "providerId": "google",

 "enabled": true,

 "trustEmail": true,

 "storeToken": false,

 "addReadTokenRoleOnCreate": false,

https://docs.elest.io/uploads/images/gallery/2025-06/agpimage.png

Access the Container

Add Provider

Requires manage-identity-providers or admin role in the target realm
REST tokens must come from a user with these privileges

To assign via Admin Console:

 "firstBrokerLoginFlowAlias": "first broker login",

 "config": {

 "clientId": "GOOGLE_CLIENT_ID",

 "clientSecret": "GOOGLE_CLIENT_SECRET"

 }

 }'

Adding Identity Providers via Docker
CLI

docker exec -it keycloak bash

/opt/keycloak/bin/kcadm.sh config credentials \

 --server http://localhost:8080 \

 --realm master --user admin --password admin

/opt/keycloak/bin/kcadm.sh create identity-provider/instances -r <realm> \

 -s alias=github -s providerId=github \

 -s enabled=true \

 -s config.clientId=GITHUB_CLIENT_ID \

 -s config.clientSecret=GITHUB_CLIENT_SECRET

Required Permissions for Identity
Federation

Users > [admin-user] > Role Mappings > Realm Roles > Add 'manage-identity-providers'

Use Standard Broker Flows: Leverage First Broker Login flow to prompt for email
verification or account linking.
Map External Claims to Roles: Use Identity Provider Mappers to assign roles or
sync attributes (like email, groups, org) automatically.
Avoid Using Public Client IDs in Backend: Always use confidential clients when
configuring from the backend or REST API.
Enable Logging During Setup: Use Keycloak’s Events > Settings to track login
attempts and errors for debugging.
Test With Separate Test Realm First: Validate your configuration in a dev/test realm
before enabling in production.

Issue Possible Cause Solution

Login button not showing on login
page

Provider not enabled Ensure enabled=true and alias is
correct

Invalid client_id error Client ID mismatch Verify credentials from the IdP
provider dashboard

User not found after login No email or username claim returned Check mappers and ensure email or
preferred_username is mapped

LDAP users not visible in UI Wrong base DN or invalid bind
credentials

Test connection under User
Federation settings

403 Forbidden on REST call Missing role or token scope Ensure token has manage-identity-
providers

Best Practices for Identity Federation

Common Issues and
Troubleshooting

Two-Factor Authentication (2FA) adds an extra layer of security to user logins by requiring
something the user knows (password) and something they have (typically an OTP via a mobile
app). This guide explains how to enable and enforce OTP-based 2FA for all or specific users in
Keycloak, using the Admin Console, authentication flows, and best practices.

Navigate to:

Choose the realm where you want to enable 2FA.

1. Go to Authentication > Flows
2. Select the Browser flow (or copy it if you want a custom flow)
3. Locate the Browser execution list:

Ensure that OTP Form is listed and set to REQUIRED
If it’s not listed:

Click Add Execution
Choose OTP Form, then set its requirement to REQUIRED

4. Click Save

Enabling Two-Factor
Authentication (2FA) in Keycloak

Enabling 2FA via the Admin Console
Log in to the Admin Console

http://<your-keycloak-domain>/admin/

Enable OTP in Authentication Flow

Go to Realm Settings > OTP and configure:

OTP Type: TOTP (time-based, most common)
Period: 30 seconds (default)
Digits: 6
Algorithm: SHA1
Look Ahead Window: 1 or 2

Click Save

Configure OTP Policy

https://docs.elest.io/uploads/images/gallery/2025-06/NfCimage.png

2FA is optional by default. To make it required for a specific user:

1. Go to Users > [username]
2. Open the Credentials tab
3. Click Set Up Required Action
4. Choose Configure OTP from the dropdown
5. Click Save

The user will be prompted to set up 2FA on their next login.

Enforcing 2FA for Specific Users

https://docs.elest.io/uploads/images/gallery/2025-06/e6Ximage.png

To enforce 2FA globally:

1. Go to Authentication > Bindings
2. Set Browser Flow to a flow where OTP Form is REQUIRED
3. All users will be required to configure 2FA on their next login if not already done

Enforcing 2FA for All Users

https://docs.elest.io/uploads/images/gallery/2025-06/VIvimage.png

Get Admin Access Token

Assign “Configure OTP” Required Action to a User

To get the user ID:

Enabling 2FA via REST API

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

curl -X PUT "https://<keycloak-domain>/admin/realms/<realm>/users/<user-id>" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{"requiredActions": ["CONFIGURE_TOTP"]}'

https://docs.elest.io/uploads/images/gallery/2025-06/ssQimage.png

Authenticate and Set OTP Action

Requires manage-users role
REST API calls must use a token with manage-users permission in the realm

To assign via Admin Console:

Use Time-Based OTP (TOTP): TOTP is compatible with standard apps like Google
Authenticator, Authy, or FreeOTP.
Customize OTP Setup Page: Modify the otp.ftl page inside your theme to reflect your
brand and offer setup instructions.
Inform Users Before Enforcing: Enable OTP as a required action with communication
ahead of rollout to avoid login issues.
Use Conditional 2FA Flows: Use conditional executions (e.g., only require OTP from
outside a trusted network/IP range).

curl -H "Authorization: Bearer <access_token>" \

 https://<keycloak-domain>/admin/realms/<realm>/users?username=<username>

Enabling 2FA via Docker CLI

docker exec -it keycloak bash

/opt/keycloak/bin/kcadm.sh config credentials \

 --server http://localhost:8080 \

 --realm master --user admin --password admin

/opt/keycloak/bin/kcadm.sh update users/<user-id> -r <realm> \

 -s 'requiredActions=["CONFIGURE_TOTP"]'

Required Permissions for 2FA
Management

Users > [admin-user] > Role Mappings > Realm Roles > Add 'manage-users'

Best Practices for 2FA

Back Up OTP Configuration: Encourage users to back up their OTP seed or enable
recovery codes for critical accounts.

Issue Possible Cause Solution

Users not prompted for 2FA OTP Form not set to REQUIRED in flow Set requirement to REQUIRED in the
Browser flow

OTP setup skips Configure OTP not added as required
action

Manually assign it to users or enforce
via default flow

“Invalid TOTP” error on login Wrong time sync or wrong app Ensure mobile device clock is correct
and app supports TOTP

OTP works once then fails Look-ahead window too small Increase look-ahead window under
Realm Settings > OTP

No OTP page shown after password Flow misconfigured Review order and requirement levels
of all executions in the flow

Common Issues and
Troubleshooting

Password resets are a critical part of account lifecycle management. Keycloak provides multiple
secure methods for resetting a user’s password manually through the Admin Console,
programmatically via REST API, or via user self-service workflows using email links. This guide
walks through all these approaches, including configuration steps, best practices, and common
issues.

This is the most direct method for administrators to reset passwords.

Log in to:

Select the desired realm.

1. Go to Users > [username] > Credentials
2. Under Set Password:

Enter a new password
Confirm it
Toggle Temporary:

ON = user will be forced to change it on next login
OFF = permanent change

3. Click Set Password

The new password takes effect immediately.

Resetting User Passwords in
KeycloakNew Page

Resetting Password via Admin
Console

Access the Admin Console

http://<your-keycloak-domain>/admin/

Reset a User’s Password

To get <user-id>:

Resetting Password via REST API
Get Admin Access Token

curl -X POST "https://<keycloak-domain>/realms/master/protocol/openid-connect/token" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "username=admin" \

 -d "password=admin-password" \

 -d "grant_type=password" \

 -d "client_id=admin-cli"

Set New Password for a User

curl -X PUT "https://<keycloak-domain>/admin/realms/<realm>/users/<user-id>/reset-password" \

 -H "Authorization: Bearer <access_token>" \

 -H "Content-Type: application/json" \

 -d '{

 "type": "password",

 "value": "SecurePassword123!",

 "temporary": false

 }'

https://docs.elest.io/uploads/images/gallery/2025-06/BPHimage.png

1. Go to Realm Settings > Email
2. Enter your SMTP configuration:

Host
Port
From address
Username/password

3. Click Test Connection
4. Click Save

curl -H "Authorization: Bearer <access_token>" \

 https://<keycloak-domain>/admin/realms/<realm>/users?username=<username>

Resetting Password via Docker CLI
Inside the Container

docker exec -it keycloak bash

Reset User Password

/opt/keycloak/bin/kcadm.sh config credentials \

 --server http://localhost:8080 \

 --realm master --user admin --password admin

/opt/keycloak/bin/kcadm.sh set-password -r <realm> \

 --username <username> --new-password "SecurePassword123!" --temporary=false

Resetting Password via Email (Self-
Service)
Configure SMTP

1. Go to Authentication > Flows > Browser
2. Ensure Reset Credentials subflow is present
3. Under Realm Settings > Login, enable:

Forgot Password
Email as Username (optional)

Enable “Forgot Password” Option

Trigger Reset Link (User Side)

https://docs.elest.io/uploads/images/gallery/2025-06/zTMimage.png
https://docs.elest.io/uploads/images/gallery/2025-06/7rsimage.png

Users can go to the login page, click Forgot Password, and receive a reset link via email.

Admin Console: Must have manage-users role
REST API: Token must have manage-users in the target realm

To assign via Admin Console:

Always Use Temporary Passwords for Manual Resets: For admin-initiated resets,
mark passwords as temporary to enforce user re-entry.
Secure SMTP Configuration: Always use TLS/SSL for SMTP and avoid using free/public
SMTP providers in production.
Limit Password Reset Frequency: Use brute-force protection under Realm Settings
> Security Defenses > Brute Force Detection.
Log and Audit Password Resets: Enable Events > Settings to log password reset
events and maintain an audit trail.
Inform Users of Security Practices: Add disclaimers to reset emails and verify request
intent using short-lived links.

Issue Possible Cause Solution

Password reset link not received SMTP not configured or invalid Set up SMTP under Realm Settings >
Email

Reset link expired Time limit exceeded Increase Reset Link Lifespan under
Realm Settings > Tokens

User not prompted to change
password

Password not marked as temporary Enable temporary: true or configure
as required action

REST API returns 403 Forbidden Missing permissions Ensure admin token has manage-
users role

User not found error Wrong realm or username Confirm realm and check Users >
View all users

Required Permissions

Users > [admin-user] > Role Mappings > Realm Roles > Add 'manage-users'

Best Practices for Password Resets

Common Issues and
Troubleshooting

