
Exporting and Importing Realms
Migrating from Another IAM Provider to Keycloak
Cloning a Realm to a New Cluster or Region

Realm & Configuration
Migration

Elestio enables seamless migration of Keycloak realms by supporting realm exports and imports.
This capability is vital for backing up configurations, replicating environments, or transitioning
between staging and production systems. The process ensures consistency across deployments
while preserving all realm-level resources such as users, roles, groups, clients, and identity
providers.

Before initiating realm export or import, it’s essential to prepare both the source and target
environments to ensure compatibility and prevent data loss:

Create an Elestio Account and Deploy Keycloak
Sign up at elest.io and deploy a Keycloak instance. Ensure the Keycloak version in the
target environment matches the source to avoid compatibility issues during import.
Backup Existing Configuration
Always create a snapshot or export of the existing realm configuration before starting.
This ensures a rollback path in case of issues during import.
Verify Resource Limits
Confirm the Elestio service has adequate CPU, RAM, and storage to accommodate the
imported realm data, especially when dealing with large user bases or multiple clients.

Keycloak provides CLI-based tools and startup parameters to export realm configurations. Elestio
supports these via custom startup commands.

Export Using kcadm.sh (CLI)

This method exports the realm configuration to a JSON file.

Exporting and Importing Realms

Key Steps for Exporting and
Importing
Pre-Migration Preparation

Exporting a Realm

/opt/keycloak/bin/kcadm.sh config credentials --server http://localhost:8080 --realm master --

user admin --password <your-password>

/opt/keycloak/bin/kcadm.sh get realms/<realm-name> > myrealm-export.json

https://elest.io

Export Using Environment Variable Method (Preferred on Elestio): You can
configure the container to perform a full export on startup:

And use the following command:

This will export the full realm configuration including users, clients, and roles into the myrealm-
export.json file.

Download the Export File

After the export completes, use the Elestio dashboard or scp/rsync to download the exported JSON
file from the container.

Once the realm has been exported and downloaded, follow these steps to import it into your
Elestio-hosted Keycloak instance:

Upload Exported JSON File: Place the exported file in a volume accessible to the Elestio
container (e.g., under /opt/keycloak/data/import/) .
Configure Import Environment Variable: In the Elestio dashboard, go to your
Keycloak service → Settings → Environment Variables, and add:

Trigger Import at Startup: Elestio will automatically import the realm during the next
container restart. To do this:

Click Restart Service from the Elestio dashboard.
Monitor logs in real-time to ensure the import process completes successfully.

After importing the realm into your Elestio-hosted Keycloak instance, perform the following steps

Validate Realm Components: Confirm all users, roles, groups, clients, and identity
providers have been imported. Use the Keycloak Admin UI or kcadm.sh CLI to inspect the
imported realm.
Test Application Authentication Flows: Update client application configurations if
needed. Confirm login, token exchange, and logout flows work as expected using the new

KEYCLOAK_IMPORT=/opt/keycloak/data/import/myrealm-export.json

/opt/keycloak/bin/kc.sh export --dir /opt/keycloak/data/import --realm <realm-name> --users

realm_file

Importing a Realm into Elestio-Hosted Keycloak

KEYCLOAK_IMPORT=/opt/keycloak/data/import/myrealm-export.json

Post-Import Validation and Optimization

realm setup.
Review Access Tokens and Certificates: Ensure keys and token lifespans are properly
configured. Replace any expired or incompatible certificates.
Enable Monitoring and Backup: Use Elestio’s built-in monitoring tools to observe
performance and usage. Schedule regular backups from the dashboard to ensure data
protection.
Apply Security Best Practices: Rotate admin credentials. Set up IP whitelisting and
firewalls via Elestio. Review and assign minimal privileges to users and service accounts.

Simplified Automation: Elestio automates backup, monitoring, and scaling, removing
manual overhead from managing Keycloak instances.
Secure by Default: Instances are provisioned with firewalls, encryption, and unique
passwords. Elestio keeps Keycloak up to date with critical security patches.
Scalable and Portable: Realms can be exported and imported across environments with
ease, enabling multi-region replication, staging-to-prod transitions, and more.
Performance Optimized: Instances are pre-tuned for performance. Elestio supports
scaling CPU, RAM, and volume size based on identity workload.

Benefits of Using Elestio for Realm
Management

Migrating to Keycloak from other IAM platforms such as Auth0, Okta, Firebase Auth, or custom-built
identity solutions requires careful preparation, structured data transformation, and secure
reconfiguration of users, applications, and federation protocols. This guide provides a
comprehensive, command-supported migration pathway tailored for real-world
deployments—especially useful in DevOps pipelines and managed hosting environments such as
Elestio.

Begin by auditing your existing IAM system to determine the number of users, the complexity of
roles and permissions, the use of federated identity providers (like Google or LDAP), and any
custom claims or attributes associated with each user. Export the data structure if the platform
supports it. For example, Auth0 offers a Management API to export users in JSON format, while
Okta allows CSV exports directly from the dashboard. Firebase Auth provides CLI-based user export
via the auth:export command.

Simultaneously, deploy a new Keycloak instance on your preferred infrastructure—using Docker,
Kubernetes, or a managed solution. For local Docker-based testing, the following command spins
up a Keycloak container:

After starting the Keycloak server, access the admin console at http://localhost:8080/admin/.
Create a new realm to isolate your identity configuration. In this realm, define the clients
(applications), roles, and groups you plan to import or recreate based on your previous IAM
structure.

Export users from your existing IAM provider and structure the data for compatibility with Keycloak.
If using Auth0, the export may look like this:

Migrating from Another IAM
Provider to Keycloak

Pre-Migration Preparation

docker run -d --name keycloak \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev

User and Credential Migration

Transform this data into a Keycloak-compatible JSON using a script. You can use the Keycloak
Admin REST API or the kcadm.sh CLI to programmatically create users. Here’s an example using
kcadm.sh:

To bulk import users, generate a JSON file with user definitions and mount it into the Keycloak
container using the keycloak-config-cli. For example:

If your previous IAM provider did not expose hashed passwords or used incompatible hashing
algorithms, plan to send password reset links after user import. Alternatively, you can enforce first-
login password resets using the following command:

{

 "email": "jane.doe@example.com",

 "user_id": "auth0|abc123",

 "email_verified": true,

 "given_name": "Jane",

 "family_name": "Doe",

 "custom_roles": ["admin", "viewer"]

}

./kcadm.sh config credentials --server http://localhost:8080 \

 --realm master \

 --user admin \

 --password admin

./kcadm.sh create users -r myrealm -s username=jane.doe \

 -s enabled=true \

 -s email=jane.doe@example.com \

 -s emailVerified=true

./kcadm.sh set-password -r myrealm --username jane.doe --new-password newPassword123!

docker run --rm \

 -e KEYCLOAK_URL=http://localhost:8080 \

 -e KEYCLOAK_USER=admin \

 -e KEYCLOAK_PASSWORD=admin \

 -v "$(pwd)/realm-config:/config" \

 adorsys/keycloak-config-cli:latest

./kcadm.sh update users/<user_id> -r myrealm -s "requiredActions=['UPDATE_PASSWORD']"

https://github.com/adorsys/keycloak-config-cli

Next, migrate application integrations. In Keycloak, applications are known as clients. For each
application that used your old IAM system, recreate a corresponding client in Keycloak. Choose the
correct protocol (OpenID Connect or SAML) and configure the redirect URIs, web origins, client
secrets, and access token lifetimes.

For example, to create a public OpenID Connect client:

For third-party identity federation, use the Keycloak admin console or CLI to add identity providers.
To connect Google OAuth:

For LDAP integration:

For SAML-based federation, download the SAML metadata from your IdP and import it using the
admin console under Identity Providers > Add provider > SAML v2.0.

Application and Federation Migration

./kcadm.sh create clients -r myrealm \

 -s clientId=my-app \

 -s enabled=true \

 -s publicClient=true \

 -s 'redirectUris=["https://myapp.com/*"]'

./kcadm.sh create identity-provider/instances -r myrealm \

 -s alias=google \

 -s providerId=google \

 -s enabled=true \

 -s storeToken=true \

 -s "config.clientId=<GOOGLE_CLIENT_ID>" \

 -s "config.clientSecret=<GOOGLE_CLIENT_SECRET>" \

 -s "config.defaultScope=email profile"

./kcadm.sh create user-storage -r myrealm \

 -s name=ldap \

 -s providerId=ldap \

 -s "config.connectionUrl=ldap://ldap.example.com" \

 -s "config.bindDn=cn=admin,dc=example,dc=com" \

 -s "config.bindCredential=adminpass" \

 -s "config.usersDn=ou=users,dc=example,dc=com"

Post-Migration Validation and Optimization

After users, clients, and federation setups are migrated, conduct the following checklist for
validation:

User Login Testing: Log in with a subset of migrated user accounts to verify that
usernames, emails, roles, and group mappings are correctly preserved.
Token Verification: Use JWT decoder tools to inspect access and ID tokens issued by
Keycloak. Ensure claims match what applications expect.
Application Login Flow: Test login, logout, and token refresh operations in all integrated
applications.
Admin Console Review: Confirm that users, groups, roles, and clients appear as
expected in the Keycloak admin console.
MFA Setup: Enable and test two-factor authentication (TOTP or WebAuthn) for relevant
user roles.
Email Configuration: Configure SMTP settings under Realm Settings > Email and
verify email-based actions such as password resets or verification emails.
Backup Enablement: Configure regular database backups using cron jobs, Kubernetes
volumes, or your platform’s snapshot features.
HTTPS Enforcement: Ensure your instance is served over TLS with valid certificates.
Update keycloak.conf or reverse proxy settings accordingly.
Audit Logs: Enable event logging under Events > Settings to monitor authentication
events and system-level changes.
Token Lifespan Configuration: Adjust accessTokenLifespan, refreshTokenMaxReuse,
and session timeouts to fit your application needs.
Security Review: Rotate all client secrets, disable default admin accounts in production,
and set up firewalls to restrict admin endpoint access.

In scenarios where high availability, regional redundancy, or environment separation (e.g., staging
to production) is required, cloning an entire Keycloak realm to a new cluster or region becomes
essential. This process involves exporting the realm’s configuration and optionally user data,
transferring it securely, and importing it into a fresh Keycloak instance. This guide covers all the
required steps, including command-line tooling, configuration handling, and validation checks to
ensure a seamless realm replication.

Before initiating the cloning process, ensure that both the source and target Keycloak clusters are
accessible and running compatible versions of Keycloak. This avoids schema mismatches and
import errors. Install the Keycloak Admin CLI (kcadm.sh) and Keycloak Configuration CLI (keycloak-
config-cli) on your local system or CI/CD pipeline.

Deploy a new Keycloak instance in the target cluster or region. This can be done using Docker,
Kubernetes, or a managed hosting provider. Example Docker command to spin up a development
instance:

Ensure that network connectivity exists between your machine and the target Keycloak instance.
Also, create an admin user for the new instance.

To begin the cloning process, export the realm’s full configuration (including clients, roles, groups,
and optionally users) using the Keycloak Admin CLI or built-in export tools. If using the Keycloak
start command with --export flag, execute:

Cloning a Realm to a New
Cluster or Region

Pre-Cloning Preparation

docker run -d --name keycloak \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev

Exporting Realm Configuration from the
Source Cluster

To include users in the export:

If the Keycloak instance is running in Docker:

The exported realm will be saved as a JSON file, e.g., myrealm-realm.json.

Once exported, securely transfer the generated realm export directory or file (myrealm-realm.json)
to the target cluster or region. Depending on your infrastructure, use one of the following methods:

SCP or SFTP for VM-to-VM transfer:

AWS S3, Azure Blob Storage, or GCS for multi-cloud environments.
Git repositories or artifact registries for CI/CD pipelines.

Ensure that the target Keycloak container or pod has access to the file location.

To import the realm into the new Keycloak instance, use the same kc.sh tool on the target side.
The import must be triggered before the Keycloak server starts. If using a container:

/opt/keycloak/bin/kc.sh export --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users skip

/opt/keycloak/bin/kc.sh export --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users all

docker exec -it keycloak /opt/keycloak/bin/kc.sh export \

 --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users all

Transferring Exported Data

scp myrealm-realm.json user@target-host:/tmp/

Importing Realm into the Target Cluster

docker run -d --name keycloak-new \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

This command will initialize the new Keycloak instance with the cloned realm, including users if
they were part of the original export.

Alternatively, if the server is already running, use kcadm.sh or the keycloak-config-cli for post-start
import. The keycloak-config-cli is suitable for GitOps-style deployments:

After the import is complete, validate the integrity of the cloned realm with the following checks:

Confirm that the new realm appears in the admin console and is accessible at
/realms/myrealm.
Inspect clients to verify that client IDs, redirect URIs, and secrets have been preserved.
Validate that roles, groups, and permissions are correctly replicated.
Test login using a few sample user accounts if users were exported.
Decode access tokens to confirm the correctness of claims, issuer, and audience.
Check identity provider connections (e.g., Google, LDAP) and test federated logins.
Enable auditing under Events > Settings to monitor realm activity in the new instance.
Update baseUrl settings for clients if moving across DNS regions.
Ensure SMTP settings, themes, and custom scripts are present and functioning.
Enable TLS and update public frontend URLs if applicable.
Verify realm-specific settings like session timeout, brute force detection, and required
actions.

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 -v $(pwd)/export:/opt/keycloak/data/import \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev --import-realm

docker run --rm \

 -e KEYCLOAK_URL=http://localhost:8080 \

 -e KEYCLOAK_USER=admin \

 -e KEYCLOAK_PASSWORD=admin \

 -v "$(pwd)/myrealm:/config" \

 adorsys/keycloak-config-cli:latest

Post-Cloning Validation

