
In scenarios where high availability, regional redundancy, or environment separation (e.g., staging
to production) is required, cloning an entire Keycloak realm to a new cluster or region becomes
essential. This process involves exporting the realm’s configuration and optionally user data,
transferring it securely, and importing it into a fresh Keycloak instance. This guide covers all the
required steps, including command-line tooling, configuration handling, and validation checks to
ensure a seamless realm replication.

Before initiating the cloning process, ensure that both the source and target Keycloak clusters are
accessible and running compatible versions of Keycloak. This avoids schema mismatches and
import errors. Install the Keycloak Admin CLI (kcadm.sh) and Keycloak Configuration CLI (keycloak-
config-cli) on your local system or CI/CD pipeline.

Deploy a new Keycloak instance in the target cluster or region. This can be done using Docker,
Kubernetes, or a managed hosting provider. Example Docker command to spin up a development
instance:

Ensure that network connectivity exists between your machine and the target Keycloak instance.
Also, create an admin user for the new instance.

To begin the cloning process, export the realm’s full configuration (including clients, roles, groups,
and optionally users) using the Keycloak Admin CLI or built-in export tools. If using the Keycloak
start command with --export flag, execute:

Cloning a Realm to a New
Cluster or Region

Pre-Cloning Preparation

docker run -d --name keycloak \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev

Exporting Realm Configuration from the
Source Cluster

To include users in the export:

If the Keycloak instance is running in Docker:

The exported realm will be saved as a JSON file, e.g., myrealm-realm.json.

Once exported, securely transfer the generated realm export directory or file (myrealm-realm.json)
to the target cluster or region. Depending on your infrastructure, use one of the following methods:

SCP or SFTP for VM-to-VM transfer:

AWS S3, Azure Blob Storage, or GCS for multi-cloud environments.
Git repositories or artifact registries for CI/CD pipelines.

Ensure that the target Keycloak container or pod has access to the file location.

To import the realm into the new Keycloak instance, use the same kc.sh tool on the target side.
The import must be triggered before the Keycloak server starts. If using a container:

/opt/keycloak/bin/kc.sh export --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users skip

/opt/keycloak/bin/kc.sh export --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users all

docker exec -it keycloak /opt/keycloak/bin/kc.sh export \

 --dir /opt/keycloak/data/export \

 --realm myrealm \

 --users all

Transferring Exported Data

scp myrealm-realm.json user@target-host:/tmp/

Importing Realm into the Target Cluster

docker run -d --name keycloak-new \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

Revision #2
Created 16 June 2025 06:56:05 by kaiwalya
Updated 16 June 2025 06:57:48 by kaiwalya

This command will initialize the new Keycloak instance with the cloned realm, including users if
they were part of the original export.

Alternatively, if the server is already running, use kcadm.sh or the keycloak-config-cli for post-start
import. The keycloak-config-cli is suitable for GitOps-style deployments:

After the import is complete, validate the integrity of the cloned realm with the following checks:

Confirm that the new realm appears in the admin console and is accessible at
/realms/myrealm.
Inspect clients to verify that client IDs, redirect URIs, and secrets have been preserved.
Validate that roles, groups, and permissions are correctly replicated.
Test login using a few sample user accounts if users were exported.
Decode access tokens to confirm the correctness of claims, issuer, and audience.
Check identity provider connections (e.g., Google, LDAP) and test federated logins.
Enable auditing under Events > Settings to monitor realm activity in the new instance.
Update baseUrl settings for clients if moving across DNS regions.
Ensure SMTP settings, themes, and custom scripts are present and functioning.
Enable TLS and update public frontend URLs if applicable.
Verify realm-specific settings like session timeout, brute force detection, and required
actions.

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 -v $(pwd)/export:/opt/keycloak/data/import \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev --import-realm

docker run --rm \

 -e KEYCLOAK_URL=http://localhost:8080 \

 -e KEYCLOAK_USER=admin \

 -e KEYCLOAK_PASSWORD=admin \

 -v "$(pwd)/myrealm:/config" \

 adorsys/keycloak-config-cli:latest

Post-Cloning Validation

