
This guide explains how to establish a secure connection between a Node.js application and a
Keycloak identity provider using the keycloak-connect middleware. It walks through the necessary
setup, configuration, and usage of a protected route that requires authentication.

Certain parameters must be provided to integrate a Node.js application with Keycloak. Below is a
breakdown of each required variable, its purpose, and where to find it. Here’s what each variable
represents:

Variable Description Purpose

REALM The realm name from the Keycloak Admin Console Defines the namespace for authentication and
authorization

AUTH_SERVER_URL The full realm URL from Keycloak (e.g., https://your-
domain/realms/xyz)

Used as the OIDC issuer base URL

CLIENT_ID Client ID from the Keycloak Clients page Identifies the application in Keycloak

CLIENT_SECRET Secret for the OIDC client, found in the Credentials
tab of the client

Authenticates the Node.js application to
Keycloak

REDIRECT_URI URI where users are redirected after authentication Ensures Keycloak returns control to your app
after login

These values can usually be found in the Keycloak Admin Console under Clients and Realm
Settings. Make sure to copy these details and add them to the code moving ahead.

Check if Node.js is installed by running:

If not installed, download it from https://nodejs.org and install.

Verify NPM installation:

Connecting with Node.js

Variables

Prerequisites
Install Node.js and NPM

node -v

https://nodejs.org

The keycloak-connect package enables Node.js applications to authenticate using Keycloak. Install
the required packages using:

Once all prerequisites are set up, create a new file named keycloak.js and add the following code:

npm -v

Install Required Packages

npm install express express-session keycloak-connect

Code

const express = require("express");

const session = require("express-session");

const Keycloak = require("keycloak-connect");

const app = express();

const port = process.env.PORT || 3000;

const memoryStore = new session.MemoryStore();

app.use(

 session({

 secret: "supersecret",

 resave: false,

 saveUninitialized: true,

 store: memoryStore,

 })

);

const keycloakConfig = {

 realm: "REALM",

 authServerUrl: "AUTH_SERVER_URL",

 clientId: "CLIENT_ID",

 credentials: {

 secret: "CLIENT_SECRET",

 },

 sslRequired: "external",

Revision #1
Created 17 June 2025 07:23:35 by kaiwalya

Replace the placeholder values (REALM, AUTH_SERVER_URL, CLIENT_ID, and CLIENT_SECRET) with
actual values from your Keycloak server.

Open the terminal or command prompt and navigate to the directory where keycloak.js is saved.
Once in the correct directory, run the script with the command:

If the connection is successful:

1. Visit http://localhost:3000 in your browser to access the public route.
2. Visit http://localhost:3000/protected to trigger Keycloak authentication.
3. Upon successful login, you’ll be redirected back and see protected content.
4. Visit http://localhost:3000/logout to log out and end the session.

 confidentialPort: 0,

};

const keycloak = new Keycloak({ store: memoryStore }, keycloakConfig);

app.use(keycloak.middleware());

app.get("/", (req, res) => {

 res.send("Welcome to the public route.");

});

app.get("/protected", keycloak.protect(), (req, res) => {

 res.send("You have accessed a protected route.");

});

app.get("/logout", (req, res) => {

 req.logout();

 res.redirect("/");

});

app.listen(port, () => {

 console.log(`Server running at http://localhost:${port}`);

});

Execution

node keycloak.js

Updated 17 June 2025 09:03:11 by kaiwalya

