Connecting with Python

This guide explains how to establish a connection between a Python Flask application and a
Keycloak identity provider using Flask-OIDC. It walks through the necessary setup, configuration,
and usage of a protected route that requires authentication.

Variables

Certain parameters must be provided to integrate a Python Flask application with Keycloak. Below
is a breakdown of each required variable, its purpose, and where to find it. Here’'s what each
variable represents:

Variable Description Purpose
CLIENT_ID Client ID from the Keycloak Clients page Identifies the Flask app in the Keycloak
realm
CLIENT SECRET Secret from the Credentials tab of the client Authenticates the Flask app with Keycloak
ISSUER Full Keycloak realm URL (e.g. https://your- Defines the OpenlD Connect issuer

domain/realms/your-realm)

REDIRECT_URI The callback URL Keycloak will redirect to after Used by Flask-OIDC to complete login flow
login
TOKEN_ENDPOINT Token URL from Keycloak Used for exchanging authorization codes for

access tokens

USERINFO_ENDPOINT User info endpoint from Keycloak Used to fetch user profile after login

These values can be found in the Keycloak Admin Console under Clients —= [Your Client] -
Settings / Credentials / Endpoints. Make sure to copy and add them to the code as shown.

Prerequisites

Install Python and pip

Check if Python is installed by running:
python3 --version

If not installed, download it from https://python.org and install.

https://python.org

Verify pip installation:
pip3 --version

Install Required Packages

Install the required Python packages using:

pip3 install flask flask-oidc

Code

Once all prerequisites are set up, create a new file named app.py and add the following code:

from flask import Flask, redirect, url for, jsonify

from flask oidc import OpenIDConnect
app = Flask(__name_)

Keycloak OIDC configuration (no JSON file required)
app.config.update({
'SECRET KEY': 'your-random-secret',
'0OIDC CLIENT SECRETS': {
"web": {
"client _id": "CLIENT ID",
"client secret": "CLIENT SECRET",
"auth uri": "https://your-keycloak-domain/realms/your-realm/protocol/openid-
connect/auth",
"token uri": "https://your-keycloak-domain/realms/your-realm/protocol/openid-
connect/token",
"userinfo uri": "https://your-keycloak-domain/realms/your-realm/protocol/openid-
connect/userinfo",

"redirect uris": ["http://localhost:5000/0idc/callback"]

+

'0IDC_SCOPES': ['openid', 'email', 'profile'l,
'0IDC_CALLBACK ROUTE': '/oidc/callback"',
'0IDC_COOKIE SECURE': False

oidc = OpenIDConnect(app)

@app.route('/")
def index():

return 'Welcome to the public route.'

@app.route('/protected")
@oidc.require login
def protected():
user_info = oidc.user getinfo(['email', 'sub', 'name'])
return jsonify({
"message": "You are authenticated",

"user": user_info

})

@app.route('/logout')
def logout():
oidc.logout()

return redirect(url for('index'))

if name == ' main_':

app.run(debug=True)

Replace the placeholders in the client_id, client_secret, and URL fields with actual values from your
Keycloak instance.

Execution

Open the terminal and navigate to the directory where app.py is saved. Once in the correct
directory, run the script with the command:

python3 app.py
If the connection is successful:

1. Open http://localhost:5000 in your browser — Public route.

2. Open http://localhost:5000/protected — Redirects to Keycloak login.

3. After logging in, you'll see user info returned from the protected route.

4. Visit http://localhost:5000/logout to end the session and return to the public page.

Revision #1
Created 17 June 2025 07:47:20 by kaiwalya
Updated 17 June 2025 09:03:48 by kaiwalya

