
Migrating to Keycloak from other IAM platforms such as Auth0, Okta, Firebase Auth, or custom-built
identity solutions requires careful preparation, structured data transformation, and secure
reconfiguration of users, applications, and federation protocols. This guide provides a
comprehensive, command-supported migration pathway tailored for real-world
deployments—especially useful in DevOps pipelines and managed hosting environments such as
Elestio.

Begin by auditing your existing IAM system to determine the number of users, the complexity of
roles and permissions, the use of federated identity providers (like Google or LDAP), and any
custom claims or attributes associated with each user. Export the data structure if the platform
supports it. For example, Auth0 offers a Management API to export users in JSON format, while
Okta allows CSV exports directly from the dashboard. Firebase Auth provides CLI-based user export
via the auth:export command.

Simultaneously, deploy a new Keycloak instance on your preferred infrastructure—using Docker,
Kubernetes, or a managed solution. For local Docker-based testing, the following command spins
up a Keycloak container:

After starting the Keycloak server, access the admin console at http://localhost:8080/admin/.
Create a new realm to isolate your identity configuration. In this realm, define the clients
(applications), roles, and groups you plan to import or recreate based on your previous IAM
structure.

Export users from your existing IAM provider and structure the data for compatibility with Keycloak.
If using Auth0, the export may look like this:

Migrating from Another IAM
Provider to Keycloak

Pre-Migration Preparation

docker run -d --name keycloak \

 -p 8080:8080 \

 -e KEYCLOAK_ADMIN=admin \

 -e KEYCLOAK_ADMIN_PASSWORD=admin \

 quay.io/keycloak/keycloak:24.0.3 \

 start-dev

User and Credential Migration

Transform this data into a Keycloak-compatible JSON using a script. You can use the Keycloak
Admin REST API or the kcadm.sh CLI to programmatically create users. Here’s an example using
kcadm.sh:

To bulk import users, generate a JSON file with user definitions and mount it into the Keycloak
container using the keycloak-config-cli. For example:

If your previous IAM provider did not expose hashed passwords or used incompatible hashing
algorithms, plan to send password reset links after user import. Alternatively, you can enforce first-
login password resets using the following command:

{

 "email": "jane.doe@example.com",

 "user_id": "auth0|abc123",

 "email_verified": true,

 "given_name": "Jane",

 "family_name": "Doe",

 "custom_roles": ["admin", "viewer"]

}

./kcadm.sh config credentials --server http://localhost:8080 \

 --realm master \

 --user admin \

 --password admin

./kcadm.sh create users -r myrealm -s username=jane.doe \

 -s enabled=true \

 -s email=jane.doe@example.com \

 -s emailVerified=true

./kcadm.sh set-password -r myrealm --username jane.doe --new-password newPassword123!

docker run --rm \

 -e KEYCLOAK_URL=http://localhost:8080 \

 -e KEYCLOAK_USER=admin \

 -e KEYCLOAK_PASSWORD=admin \

 -v "$(pwd)/realm-config:/config" \

 adorsys/keycloak-config-cli:latest

./kcadm.sh update users/<user_id> -r myrealm -s "requiredActions=['UPDATE_PASSWORD']"

https://github.com/adorsys/keycloak-config-cli

Next, migrate application integrations. In Keycloak, applications are known as clients. For each
application that used your old IAM system, recreate a corresponding client in Keycloak. Choose the
correct protocol (OpenID Connect or SAML) and configure the redirect URIs, web origins, client
secrets, and access token lifetimes.

For example, to create a public OpenID Connect client:

For third-party identity federation, use the Keycloak admin console or CLI to add identity providers.
To connect Google OAuth:

For LDAP integration:

For SAML-based federation, download the SAML metadata from your IdP and import it using the
admin console under Identity Providers > Add provider > SAML v2.0.

Application and Federation Migration

./kcadm.sh create clients -r myrealm \

 -s clientId=my-app \

 -s enabled=true \

 -s publicClient=true \

 -s 'redirectUris=["https://myapp.com/*"]'

./kcadm.sh create identity-provider/instances -r myrealm \

 -s alias=google \

 -s providerId=google \

 -s enabled=true \

 -s storeToken=true \

 -s "config.clientId=<GOOGLE_CLIENT_ID>" \

 -s "config.clientSecret=<GOOGLE_CLIENT_SECRET>" \

 -s "config.defaultScope=email profile"

./kcadm.sh create user-storage -r myrealm \

 -s name=ldap \

 -s providerId=ldap \

 -s "config.connectionUrl=ldap://ldap.example.com" \

 -s "config.bindDn=cn=admin,dc=example,dc=com" \

 -s "config.bindCredential=adminpass" \

 -s "config.usersDn=ou=users,dc=example,dc=com"

Post-Migration Validation and Optimization

Revision #1
Created 16 June 2025 06:26:30 by kaiwalya
Updated 16 June 2025 06:54:26 by kaiwalya

After users, clients, and federation setups are migrated, conduct the following checklist for
validation:

User Login Testing: Log in with a subset of migrated user accounts to verify that
usernames, emails, roles, and group mappings are correctly preserved.
Token Verification: Use JWT decoder tools to inspect access and ID tokens issued by
Keycloak. Ensure claims match what applications expect.
Application Login Flow: Test login, logout, and token refresh operations in all integrated
applications.
Admin Console Review: Confirm that users, groups, roles, and clients appear as
expected in the Keycloak admin console.
MFA Setup: Enable and test two-factor authentication (TOTP or WebAuthn) for relevant
user roles.
Email Configuration: Configure SMTP settings under Realm Settings > Email and
verify email-based actions such as password resets or verification emails.
Backup Enablement: Configure regular database backups using cron jobs, Kubernetes
volumes, or your platform’s snapshot features.
HTTPS Enforcement: Ensure your instance is served over TLS with valid certificates.
Update keycloak.conf or reverse proxy settings accordingly.
Audit Logs: Enable event logging under Events > Settings to monitor authentication
events and system-level changes.
Token Lifespan Configuration: Adjust accessTokenLifespan, refreshTokenMaxReuse,
and session timeouts to fit your application needs.
Security Review: Rotate all client secrets, disable default admin accounts in production,
and set up firewalls to restrict admin endpoint access.

