
KeyDB is a high-performance fork of Redis that offers multithreading, active-active replication, and
enhanced memory management. Setting up KeyDB correctly is essential for achieving low-latency
performance and ensuring durability in modern applications. This guide walks through various
methods to run and connect to KeyDB: using the KeyDB CLI, running inside Docker containers, and
integrating with scripting workflows. It also outlines best practices to follow during configuration
and operation.

KeyDB provides a built-in command-line interface tool called keydb-cli. It allows direct interaction
with a KeyDB server and supports both local and remote connections. All standard Redis-
compatible commands can be executed through this tool, along with extended functionality
supported by KeyDB.

If you have a local KeyDB instance running, either from a package manager or inside Docker, you
can start the CLI with no extra arguments:

To connect to a remote KeyDB instance, provide the host, port, and authentication details if
configured:

After executing the command, you will be placed in the KeyDB shell, where you can interactively
issue commands.

KeyDB can be containerized using Docker to ensure consistent environments across local
development, testing, and production systems. This is a convenient way to isolate dependencies
and manage deployment configurations.

If you are using Elestio to host your KeyDB service, log in to the Elestio dashboard. Navigate to
your KeyDB instance, then open Tools > Terminal. This will provide a browser-based shell within

Creating a Database

Creating Using keydb-cli

Connect to KeyDB:

keydb-cli

keydb-cli -h <host> -p <port> -a <password>

Running KeyDB Using Docker

Access Elestio Terminal



the server environment that has access to your containerized services.

Once inside the terminal, switch to the application directory:

Elestio services use Docker Compose for container orchestration. To enter the KeyDB container and
interact with its runtime environment, use the following command:

This starts a bash session inside the running KeyDB container.

The keydb-cli tool is available within the container and can be used to run commands directly
against the KeyDB server. If authentication is required, supply the password using the -a flag:

cd /opt/app/

Access the KeyDB Container Shell

docker-compose exec keydb bash

Access KeyDB CLI from Within the Container

https://docs.elest.io/uploads/images/gallery/2025-06/z9vimage.png


You’ll now be connected to the KeyDB instance running inside the container.

To confirm the KeyDB instance is functional, run a test by setting and retrieving a key:

Expected output:

This confirms that read/write operations are working correctly inside the containerized KeyDB
environment.

The keydb-cli command can also be used non-interactively, which is useful for shell scripts, cron
jobs, or CI/CD workflows that require interaction with the KeyDB server.

To set a key via a script:

This will set the specified key in a single command without launching the interactive shell.

To ensure readability and manageability, adopt consistent naming conventions. Use namespaces
separated by colons to logically group related keys:

This simplifies debugging, metric tracking, and migration efforts.

keydb-cli -a <password>

Test Connectivity

set testkey "Hello KeyDB"

get testkey

"Hello KeyDB"

Connecting Using keydb-cli in Scripts

keydb-cli -h <host> -p <port> -a <password> SET example_key "example_value"

Best Practices for Setting Up KeyDB
Use Meaningful Key Naming Conventions

user:1001:profile

session:2025:token

Follow Consistent Data Structures



KeyDB supports Redis-compatible data structures including strings, hashes, sets, sorted sets, lists,
and streams. Always choose the most efficient type based on access patterns and data lifecycle.
For example, hashes are ideal for storing grouped attributes, while sets work well for unique lists.

Inconsistent structure usage can lead to inefficient memory use and unexpected command
behavior.

Security should not be overlooked in production systems. Always configure a strong password
using the requirepass directive in keydb.conf. Additionally, enable TLS for encrypted traffic if the
database is accessible over the internet or across networks.

Example keydb.conf settings:

These settings help secure both access and data transmission.

KeyDB supports both Redis-style persistence mechanisms: RDB snapshots and AOF logging. These
ensure data durability in the event of process restarts or hardware failure.

Recommended settings in keydb.conf:

Use AOF for greater durability, RDB for faster restarts, or both for a balanced setup.

Monitor performance using built-in KeyDB commands like INFO, MONITOR, and SLOWLOG. These
provide insights into memory usage, command execution times, and system health. You can also
integrate external monitoring tools like Prometheus, RedisInsight, or Grafana for real-time
visualization.

Proper monitoring allows you to proactively tune memory limits, max clients, and replication
settings.

Enable Authentication and TLS

requirepass strong_secure_password

tls-port 6379

tls-cert-file /etc/ssl/certs/cert.pem

tls-key-file /etc/ssl/private/key.pem

Configure Persistence Options

save 900 1

appendonly yes

appendfsync everysec

Monitor and Tune Performance



Revision #1
Created 25 June 2025 06:57:03 by kaiwalya
Updated 25 June 2025 07:03:52 by kaiwalya

Issue Cause Solution

NOAUTH Authentication required Connecting to an instance that
requires a password without supplying
one

Use the -a flag or send the AUTH
command before other commands

ERR Client sent AUTH, but no
password is set

Authentication is attempted on a
server that does not require it

Remove the -a option or check the
requirepass directive

Cannot connect to KeyDB on
‘localhost’

The server is not running or bound to
another address/port

Check service status and inspect
keydb.conf and Docker port mappings

Docker KeyDB container refuses
connections

Network misconfiguration or the
container is still initializing

Use docker-compose logs keydb and
verify exposed ports

Data not persisted after restart Persistence settings are disabled Enable RDB and/or AOF in the
configuration file

 

Common Issues and Their Solutions


