
Optimizing memory usage in KeyDB is essential for maintaining performance, especially in
production environments like Elestio. Without proper memory control, large datasets, long-lived
keys, or inefficient operations can lead to high memory pressure, slowdowns, or even server
crashes. This guide explains how to optimize memory usage, monitor for memory-related issues,
and configure automatic cleanup using Docker Compose environments.

KeyDB allocates memory based on data structure usage and background operations like
persistence or replication. It is important to monitor key memory indicators such as used memory,
memory fragmentation, peak memory, and memory policy to understand how your instance
behaves under load.

To inspect memory statistics from the command line, use the INFO MEMORY command:

This command returns a detailed report including used_memory , used_memory_rss ,
mem_fragmentation_ratio , and maxmemory . A high fragmentation ratio may indicate inefficient
memory usage or a need to tune your allocator.

If you are running KeyDB in a Docker Compose environment, connect to the container first:

Once inside, run:

This gives you full access to execute monitoring and configuration commands.

Detect and terminate long-
running queries

Understanding KeyDB Memory Behavior

Monitoring KeyDB Memory in Real Time

keydb-cli -a <password> INFO MEMORY

docker-compose exec keydb bash

keydb-cli -a $KEYDB_PASSWORD

To avoid out-of-memory errors, it is crucial to set a memory cap and enable eviction. Edit your
keydb.conf or set these at runtime:

The maxmemory setting defines the upper limit of memory usage. The maxmemory-policy determines
how keys are evicted when that limit is reached. Recommended policies include:

allkeys-lru : Evicts the least recently used keys across all keys
volatile-lru : Evicts LRU keys with expiration set
noeviction : Rejects writes when memory is full (not recommended in production)

Use the built-in MEMORY STATS command for a high-level breakdown of memory usage by
component:

This provides statistics on memory overhead, allocator efficiency, and usage by data structure
types.

Expired keys in KeyDB are removed passively upon access or through background expiration
cycles. To force cleanup manually or test expiration behavior:

This clears internal allocator caches and triggers background memory cleanup without deleting live
keys. Use this cautiously in production environments.

You can use the MEMORY USAGE command to inspect which keys consume the most memory. For
example:

Setting Maximum Memory and Eviction
Policy

CONFIG SET maxmemory 512mb

CONFIG SET maxmemory-policy allkeys-lru

Analyzing Memory Usage with MEMORY
STATS

MEMORY STATS

Cleaning Up Expired or Unused Keys

MEMORY PURGE

Listing Keys Consuming the Most Memory

Revision #1
Created 26 June 2025 05:44:36 by kaiwalya
Updated 26 June 2025 06:09:21 by kaiwalya

To automate finding the top memory-consuming keys, use a loop with SCAN and MEMORY USAGE :

Then evaluate MEMORY USAGE per key manually or using a script.

Minimize memory pressure by following these recommendations:

Avoid large keys: Break large values into smaller hashes or lists to reduce memory
footprint and allow efficient partial retrieval.
Expire non-essential keys: Always set TTLs on cache data or temporary states using
EXPIRE or SETEX .
Avoid full dataset scans: Replace commands like KEYS * with SCAN to prevent memory
spikes.
Limit big lists or sets: Use commands like LRANGE mylist 0 99 instead of fetching entire
datasets with LRANGE mylist 0 -1 .
Use lazy data loading: Design applications to load only required data in batches.

Track historical memory usage using the INFO MEMORY and LATENCY DOCTOR commands periodically,
and export metrics to Prometheus or another monitoring system if needed.

Consider integrating KeyDB with monitoring tools like:

Grafana with Prometheus Exporter
Elestio’s built-in monitoring agent

These help you visualize and react to memory growth trends in real time.

Optimizing KeyDB’s memory usage is essential to running reliable, responsive services. By
configuring maxmemory , choosing an appropriate eviction policy, monitoring key memory metrics,
and cleaning up expired data, you can ensure predictable performance under load. Combine these
strategies with external monitoring for long-term stability in Docker Compose environments like
Elestio.

MEMORY USAGE mykey

SCAN 0 COUNT 100

Best Practices for KeyDB Memory
Management

Monitoring Memory Growth Over Time

