
Creating a Database
Upgrading to a Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

How-To Guides



MySQL is a leading open-source relational database management system (RDBMS) known for its
reliability, scalability, and ease of use. Setting up a database properly in MySQL is crucial for
ensuring long-term maintainability, performance, and security of applications. This guide walks
through different ways to create a MySQL database: using the MySQL CLI, using Docker containers,
and using the mysqladmin tool. It also emphasises best practices that should be followed at each
step.

The most common and straightforward way to create a database is by using the MySQL command-
line interface (mysql client). First, a connection must be established to the MySQL server using an
account with appropriate privileges, typically the root account or a designated administrative user.

Connect to MySQL:

To connect to a remote MySQL database using the MySQL CLI, you need to specify the host’s IP
address or domain name using the -h flag along with the username and password:

You will be prompted to enter the password for the root user. Upon successful login, the MySQL
shell opens where SQL queries can be executed.

To create a database with default settings:

However, it is a best practice to explicitly define the character set and collation. This prevents
potential problems with encoding and sorting, especially when dealing with multilingual data or
special characters. The recommended character set for modern applications is utf8mb4, which fully
supports Unicode.

Creating a Database

Creating a Database Using MySQL
CLI

Connect to MySQL:

mysql -u root -p

mysql -h <remote_host> -P <port> -u <username> -p

Create a New Database

CREATE DATABASE mydatabase;



Create a database with specific character set and collation:

You can verify that the database was created by listing all databases:

Explicitly setting the character set ensures data consistency and minimizes future migration issues.
Additionally, defining these settings at creation time avoids relying on server defaults, which can
vary across different environments.

Docker is a tool that helps run applications in isolated environments called containers. A MySQL
container provides a self-contained database instance that can be quickly deployed and managed.
If you are running MySQL inside a Docker container, follow these steps:

Head over to your deployed MySQL service dashboard and head over to Tools > Terminal. Use
the credentials provided there to log in to your terminal.

CREATE DATABASE mydatabase CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

SHOW DATABASES;

Creating a Database in Docker

Access Elestio Terminal



Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

Instead of pulling an image or running the container manually, use Docker Compose to interact
with your running container. As you are using Elestio, it will already be a Docker compose:

Inside the container, access the MySQL shell:

Now, to create a database, use the following command. This command tells MySQL to create a new
logical database called mydatabase . By default, it inherits settings like encoding and collation from
the template database (template1), unless specified otherwise.

cd /opt/app/

Access the MySQL Container Shell

docker-compose exec mysql bash

mysql -u root -p

Create Database

https://docs.elest.io/uploads/images/gallery/2025-04/LoCimage.png


The mysqladmin utility provides a non-interactive way to create databases. It is particularly useful for
automation scripts and quick administrative tasks.

To create a database:

One limitation of mysqladmin is that it does not allow specifying character set and collation at
creation time. Therefore, if these settings need to be controlled explicitly (which is generally
recommended), it is better to use the mysql CLI instead.

Before using mysqladmin, ensure the MySQL server is running. On traditional installations, check
the status:

If the service is not active, it can be started with:

Use Meaningful Names

Choosing clear and descriptive names for databases helps in organisation and long-term
maintenance. Avoid generic names like testdb or database1, as they do not convey the database’s
role or content. Instead, choose names that reflect the kind of data stored or the application it
supports, such as customer_data, sales_records, or analytics_db. Meaningful names improve clarity
for developers, DBAs, and future maintainers who need to quickly understand the purpose of each
database without relying heavily on documentation.

Follow Naming Conventions

CREATE DATABASE mydatabase;

Creating a Database Using
mysqladmin

mysqladmin -h <host> -P <port> -u root -p create mydatabase

sudo systemctl status mysql

sudo systemctl start mysql

Best Practices for Creating
Databases



A standardized naming convention across all environments and teams simplifies database
management and reduces confusion. MySQL database names are case-sensitive on Unix-based
systems, so consistent use of lowercase letters is recommended. Use underscores to separate
words (e.g., order_details) rather than camelCase or spaces. This avoids the need for extra quoting
in SQL queries and prevents platform-specific bugs. Additionally, avoid using reserved MySQL
keywords or special characters in database names, as these can lead to parsing errors and
unexpected behaviour.

Restrict User Permissions

Granting only the minimum required permissions significantly strengthens database security and
reduces the likelihood of accidental damage or data leaks. Following the Principle of Least Privilege,
reporting users should only be given SELECT access, while application users may require SELECT,
INSERT, UPDATE, and DELETE rights. Only a few trusted administrative users should have powerful
privileges like ALTER, DROP, or GRANT. Avoid assigning superuser access unless absolutely necessary.
Creating user roles or groups with defined scopes can help standardise permission levels across
teams and services.

Enable Backups

Regular backups are critical to ensure business continuity and safeguard against data loss from
unexpected events such as accidental deletions, server crashes, or software bugs. MySQL provides
tools like mysqldump for logical backups of individual databases, and mysqlpump or xtrabackup for
more advanced use cases. It’s good practice to schedule automated backups using cron jobs or
database orchestration tools. Backup files should be stored securely and regularly tested for
restoration to verify that the process works as expected during emergencies.

Monitor Performance

Ongoing performance monitoring is essential to maintain the responsiveness and stability of
MySQL databases. Monitoring tools like performance_schema, information_schema, or external platforms
like Percona Monitoring and Management (PMM) help identify slow queries, locked transactions,
and system resource bottlenecks. Use EXPLAIN and ANALYZE to understand query plans and optimize
indexes. Keeping an eye on connection stats, query latency, and buffer pool usage allows for timely
tuning and ensures efficient database operations at scale.

Here’s a table summarizing common problems faced during database creation and how to resolve
them:

Issue Cause Solution

ERROR 1044 (42000): Access denied
for user

The connected user does not have the
CREATE privilege.

Connect as a user with administrative
privileges or grant necessary
permissions.

Common Issues and Their Solutions



Issue Cause Solution

ERROR 1007 (HY000): Can't create
database; database exists

Attempting to create a database that
already exists.

Choose a different name or drop the
existing database if appropriate using
DROP DATABASE.

Can't connect to MySQL server on
'localhost'

MySQL server is not running, or
incorrect connection parameters are
used.

Start the MySQL service and verify
network and authentication
parameters.

Collation or character set issues later
in application

Database created without explicitly
specifying character set or collation.

Always specify utf8mb4 and a
collation like utf8mb4_unicode_ci
during database creation.

Docker MySQL container refuses
connections

MySQL container not ready or port
mappings not correctly set.

Check container logs with docker-
compose logs mysql and verify port
exposure settings in docker-
compose.yml.



Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to a Major Version

Log In and Locate Your Service

Back Up Your Data



Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-29-at-7-46-26-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-29-at-8-07-22-pm.jpg


The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-29-at-8-07-45-pm.jpg


MySQL supports a variety of plugins that extend the functionality of the database engine. These
plugins add features like authentication methods, full-text search improvements, audit logging, and
more. Popular examples include auth_socket, validate_password, and audit_log. In Elestio-hosted
MySQL instances, many common plugins are already available and can be enabled or disabled as
needed. This guide explains how to install, manage, and troubleshoot MySQL plugins and verify
compatibility with different MySQL versions.

In MySQL, plugins are usually installed globally at the server level, not per-database. If the plugin
binaries are available, they can be loaded dynamically at runtime without restarting the server.

Start by connecting to your MySQL database using a client like mysql:

To enable a plugin, use the INSTALL PLUGIN command. For example, to enable the
validate_password plugin:

You can verify that the plugin is installed by checking the plugin list:

To enable a plugin automatically at server startup, add its configuration in the my.cnf file.
However, for managed Elestio instances, this may require support team intervention unless custom
configuration access is provided.

Installing and Updating an
Extension

Installing and Enabling Plugins

mysql -u root -p -h your-elestio-hostname

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

SHOW PLUGINS;

Checking Plugin Availability &
Compatibility



Plugins must be compiled for the specific MySQL version and platform. Before upgrading MySQL or
installing a new plugin, verify that a compatible version is available for your target setup. You can
find plugin binaries under the plugin_dir, which you can locate with:

To check if a specific plugin is installed and active:

If a plugin is incompatible or missing from the plugin_dir, the server will return an error when you
attempt to install it. In this case, contact Elestio support to request installation or confirm version
compatibility.

After a MySQL version upgrade, some plugins may need to be reinstalled or updated. If a plugin is
malfunctioning after an upgrade, it is good practice to uninstall and reinstall it:

Not all plugins support automatic upgrades. You should consult plugin-specific documentation or
Elestio’s compatibility matrix before proceeding.

Issue Cause Resolution

Can't open shared library Plugin binary not found in plugin_dir Check if the .so file exists and has
correct permissions; contact Elestio if
needed

Plugin already installed Attempting to install a plugin that is
already active

Use SHOW PLUGINS to verify and avoid
duplicate installation

Permission denied Current user lacks SUPER  privilege Log in as a user with SUPER  or
administrative rights

Plugin is not loaded at startup Plugin not defined in configuration file Contact Elestio to add it to the MySQL
startup config (my.cnf)

SHOW VARIABLES LIKE 'plugin_dir';

SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME = 'validate_password';

Updating or Uninstalling Plugins

UNINSTALL PLUGIN validate_password;

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

Troubleshooting Common Plugin
Issues



Plugins can have significant control over database behavior. Only enable trusted plugins from
verified sources. Avoid enabling plugins you do not need, as they can introduce security or
performance risks. Always test plugin behavior in a staging environment before deploying to
production.

Security Considerations



Regular backups are a key part of managing a MySQL deployment. While Elestio provides
automated backups by default, you may want to perform manual backups for specific reasons,
such as preparing for a major change, keeping a local copy, or testing backup automation. This
guide walks through how to create MySQL backups on Elestio using multiple approaches. It covers
manual backups through the Elestio dashboard, using MySQL CLI tools, and Docker Compose-based
setups. It also includes advice for backup storage, retention policies, and automation using
scheduled jobs.

If you’re using Elestio’s managed MySQL service, the easiest way to create a manual backup is
through the dashboard. This built-in method creates a full snapshot of your current database state
and stores it within Elestio’s infrastructure. These backups are tied to your service and can be
restored through the same interface. This option is recommended when you need a quick,
consistent backup without using any terminal commands.

Log in to the Elestio dashboard and navigate to your MySQL service/cluster.
Click the Backups tab in the service menu.
Select Back up now to generate a snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

To trigger a manual backup from the Elestio
dashboard:



MySQL provides a set of command-line tools that are useful when you want to create backups from
your terminal. These include mysqldump for exporting databases and mysql for connectivity and
basic queries. This approach is useful when you need to store backups locally or use them with
custom automation workflows. The CLI method gives you full control over the backup format and
destination.

To use the CLI tools, you’ll need the database host, port, name, username, and password. These
details can be found in the Overview section of your MySQL service in the Elestio dashboard.

Manual Backups Using MySQL CLI

Collect Database Connection Info

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-30-at-11-34-34-am.jpg


Use mysqldump to export the database to a .sql file. This file can later be used to recreate the
database or specific tables.

Replace the placeholders with actual values from your Elestio dashboard.
The -p<password> flag must not have a space between -p and the password.

Example:

You can add the --single-transaction flag for InnoDB tables to ensure consistency during the dump.

Back Up with mysqldump

mysqldump -h <host> -P <port> -u <username> -p<password> <database_name> > <output_file>.sql

mysqldump -h mysql-example.elestio.app -P 24306 -u elestio -pelestioPass mydb > 

mydb_backup.sql

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-30-at-11-47-37-am.jpg


If your MySQL database is deployed through a Docker Compose setup on Elestio, you can run the
mysqldump command from within the running container. This is useful when the tools are installed
inside the container environment and you want to keep everything self-contained. The backup can
be created inside the container and then copied to your host system for long-term storage or
transfer.

Head over to your deployed MySQL service dashboard and go to Tools > Terminal. Use the
credentials provided there to log in to your terminal.

Once you are in your terminal, navigate to the correct directory:

Manual Backups Using Docker
Compose

Access Elestio Terminal

cd /opt/app/

Run mysqldump Inside the Container

https://docs.elest.io/uploads/images/gallery/2025-04/FNYimage.png


Use this command to run the backup from within the MySQL container. Ensure environment
variables like MYSQL_USER, MYSQL_PASSWORD, and MYSQL_DATABASE are defined, or replace them with actual
values.

This command saves the backup to /tmp/manual_backup.sql inside the container.

Once the backup is created inside the container, use the following command to copy it to your host
system:

This creates a local copy of the backup file, which you can then upload to external storage or keep
for versioned snapshots.

Once backups are created, they should be stored securely and managed with a clear retention
policy. Proper naming, encryption, and rotation reduce the risk of data loss and help during
recovery. Use timestamped filenames to identify when the backup was created. External storage
services such as AWS S3, Backblaze B2, or an encrypted server volume are recommended for long-
term storage.

Name backups clearly: mydb_backup_2025_04_29.sql
Store in secure, off-site storage if possible.
Retain 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Remove old backups automatically to save space using automation or scripts.

By combining storage hygiene with regular scheduling, you can maintain a reliable backup history
and reduce manual effort.

docker-compose exec mysql \

  bash -c "mysqldump -u \$MYSQL_USER -p\$MYSQL_PASSWORD \$MYSQL_DATABASE > 

/tmp/manual_backup.sql"

Copy Backup to Host

docker cp $(docker-compose ps -q mysql):/tmp/manual_backup.sql ./manual_backup.sql

Backup Storage & Retention Best
Practices

Guidelines to follow:

Automating Manual Backups (cron)



Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Open your crontab file for editing:

Then add a job like the following:

This will create a timestamped .sql file every day at 2 AM.
Make sure the /backups/ directory exists and is writable by the user running the cron job.

You can also compress the backup or upload it to cloud storage in the same script using tools like 
gzip, rclone, or aws-cli.

Example: Daily Backup at 2 AM

crontab -e

0 2 * * * mysqldump -h db.vm.elestio.app -P 24306 -u elestio -pelestioPass mydatabase > 

/backups/backup_$(date +\%F).sql



Restoring backups is essential for recovery, environment duplication, or rollback scenarios. Elestio
supports restoring backups both through its built-in dashboard and via command-line tools like 
mysql and mysqldump. You can also restore from inside Docker Compose environments. This guide
provides detailed steps for full and partial restores using each method and explains how to address
common errors that occur during restoration.

This method is used when you’ve created a .sql dump file using mysqldump. You can restore it
using the mysql command-line client. This approach is useful for restoring backups to new
environments, during version upgrades, or testing data locally.

If the database you’re restoring into doesn’t already exist, you must create it first:

You’ll be prompted to enter the password after running the command.

This command restores the full contents of the .sql file into the specified database:

You’ll again be prompted for the password. This command restores everything from the dump file,
including schema and data.

If your MySQL service is deployed using Docker Compose, you can restore the database inside the
container environment. This is useful when MySQL runs in an isolated Docker setup, and you want
to handle all backup and restore processes inside that environment.

Restoring a Backup

Restoring from a Backup via
Terminal

Create the target database if it does not exist

mysql -u <username> -p -h <host> -P <port> -e "CREATE DATABASE <database_name>;"

Run MySQL to import the backup

mysql -u <username> -p -h <host> -P <port> <database_name> < <backup_file>.sql

Restoring via Docker Compose

Copy the backup into the container



Use docker cp to move the .sql file from your host machine to the MySQL container:

Use the mysql CLI tool from within the container to restore the file:

Make sure your environment variables in the Docker Compose file (MYSQL_USER,
MYSQL_PASSWORD, MYSQL_DATABASE) match the values used here.

MySQL supports partial restores when the dump file is created with selective options in mysqldump
. For example, you can restore just a specific table or only schema definitions.

If you created a dump for a specific table using mysqldump -t, you can restore it independently:

To restore only the schema (no table contents), ensure that your dump file was created using:

Then restore it like this:

Partial restores work best when the original backup was generated with the appropriate level of
granularity.

docker cp ./manual_backup.sql $(docker-compose ps -q mysql):/tmp/manual_backup.sql

Run the restore inside the container

docker-compose exec mysql \

  bash -c "mysql -u \$MYSQL_USER -p\"\$MYSQL_PASSWORD\" \$MYSQL_DATABASE < 

/tmp/manual_backup.sql"

Partial Restores

Restore a specific table

mysql -u <username> -p -h <host> -P <port> <database_name> < <table_dump_file>.sql

Restore schema only (no data)

mysqldump -u <username> -p -h <host> -P <port> --no-data <database_name> > schema_only.sql

mysql -u <username> -p -h <host> -P <port> <database_name> < schema_only.sql

Common Errors & How to Fix Them



Errors during restore are often caused by permission issues, incorrect formats, or existing
conflicting objects. Understanding the error messages and their causes will help you recover faster
and avoid data loss.

1. Access denied for user

Ensure you are using the correct username/password and that the user has privileges to access the
target database.

2. Table already exists

Either drop the target database before restoring:

Or manually drop the conflicting tables before restore.

3. ERROR 1064 (Syntax Error)

Check if you’re trying to import a binary or incorrectly formatted file. Ensure you’re using .sql text
dump files with the mysql command and not raw .ibd or .frm files.

4. ERROR 1049 (Unknown Database)

The specified database doesn’t exist. Create it manually before restoring.

ERROR 1045 (28000): Access denied for user 'user'@'host'

ERROR 1050 (42S01): Table 'my_table' already exists

mysql -u <username> -p -h <host> -P <port> -e "DROP DATABASE <database_name>;"

mysql -u <username> -p -h <host> -P <port> -e "CREATE DATABASE <database_name>;"

ERROR 1064 (42000): You have an error in your SQL syntax...

ERROR 1049 (42000): Unknown database 'mydatabase'

mysql -u <username> -p -h <host> -P <port> -e "CREATE DATABASE mydatabase;"



Slow queries can degrade the performance of your MySQL-based application, leading to lag,
timeouts, or higher resource consumption. On Elestio, whether you’re accessing MySQL via
terminal, inside a Docker Compose container, or using MySQL CLI tools, there are structured ways
to inspect and optimize query performance. This guide covers how to analyze slow queries,
interpret execution plans, and apply performance improvements using techniques like EXPLAIN,
slow query logs, and schema analysis.

When connected to a MySQL server from a terminal, you can use native SQL statements and built-
in features to analyze the performance of specific queries. This is ideal for diagnosing issues in
staging or production without needing container access.

To begin, log in to your MySQL server using the MySQL client:

You’ll be prompted for the password. Once inside, you can start analyzing queries.

The EXPLAIN keyword shows how MySQL plans to execute a query. It breaks down how tables are
accessed and joined, whether indexes are used, and how many rows are expected to be scanned.

Review the type, key, rows, and Extra columns in the output. Look out for full table scans (type =
ALL), which often signal that an index may be missing.

To view which queries are actively running and their duration, use:

Identifying Slow Queries

Analyzing Slow Queries from the
Terminal

Connect to your MySQL instance via terminal

mysql -u <username> -h <host> -p

Use EXPLAIN to view the execution plan

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

Check current running queries

SHOW FULL PROCESSLIST;



This can help identify long-running or stuck queries in real time.

If your MySQL service is running inside a Docker Compose setup (as Elestio uses), it may not be
directly exposed on your host. In this case, analysis must be done from within the container.

Open a shell inside your MySQL container using Docker Compose:

This gives you a command-line shell inside the container.

Once inside the container, use the environment-defined credentials to access the database:

This gives you the same SQL interface as from the host terminal, enabling you to use EXPLAIN,
SHOW PROCESSLIST, and performance schema tools.

MySQL can log slow queries to a file. This must be enabled in your container’s my.cnf configuration
file:

After applying these settings, restart the container. Slow queries taking longer than
long_query_time (in seconds) will be logged.

You can then inspect the log file:

Analyzing Inside Docker Compose

Access the MySQL container

docker-compose exec mysql bash

Connect to MySQL from inside the container

mysql -u $MYSQL_USER -p$MYSQL_PASSWORD $MYSQL_DATABASE

Enable and view the slow query log

[mysqld]

slow_query_log = 1

slow_query_log_file = /var/log/mysql/slow.log

long_query_time = 1

cat /var/log/mysql/slow.log

Using Performance Schema 



MySQL’s performance schema and built-in commands help track query statistics over time. This is
useful when diagnosing repeat offenders or inefficient patterns.

Ensure performance_schema is enabled in your MySQL configuration:

Restart the container after updating the config.

This SQL query shows which SQL statements have the longest average execution times:

This helps you find the most resource-intensive queries over time.

Reading the output of EXPLAIN is essential to understand how MySQL processes your query and
whether it is using indexes efficiently.

Key output fields to interpret:

type: The join type. Prefer ref, range, or const over ALL (which indicates a full table scan).
key: The index used for the query. A NULL value may indicate a missing index.
rows: Estimated number of rows MySQL will scan. Lower is better.
Extra: Look for warnings like Using temporary or Using filesort, which may suggest
suboptimal queries.

Use EXPLAIN ANALYZE (available in MySQL 8.0+) to see actual vs. estimated performance:

Enable the performance schema (if not already)

[mysqld]

performance_schema=ON

Identify top queries using statement summaries

SELECT digest_text, count_star, avg_timer_wait/1000000000000 AS avg_time_sec

FROM performance_schema.events_statements_summary_by_digest

ORDER BY avg_timer_wait DESC

LIMIT 10;

Understanding the MySQL Execution
Plan

EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 42;



Once you’ve identified inefficient queries, optimization involves rewriting queries, adding indexes,
or adjusting the schema.

Common techniques:

Add indexes to columns frequently used in WHERE, JOIN, and ORDER BY.
Avoid SELECT* : Only fetch columns you need to reduce I/O.
Use LIMIT when fetching preview data or paginated results.
Re-write joins or subqueries to reduce temporary tables and filesort operations.
Update statistics with ANALYZE TABLE:

Optimizing Queries for Better
Performance

ANALYZE TABLE orders;



Long-running queries in MySQL can degrade database performance by consuming system
resources like CPU, memory, and disk I/O for extended periods. In production environments such as
Elestio, it’s essential to monitor and manage these queries effectively to maintain responsiveness
and avoid service disruptions. This guide explains how to detect, analyze, and safely terminate
long-running queries in MySQL using terminal tools, Docker Compose setups, and built-in logging
features. It also includes preventive strategies for avoiding such queries in the future.

When connected to your MySQL instance via the terminal using the MySQL CLI, you can inspect
active sessions and identify queries that have been running for an excessive duration. This is useful
for spotting inefficient or blocked operations.

To check all current sessions and running queries, execute:

This will return all client connections along with their process ID (Id), command type (Command),
execution time in seconds (Time), and the actual SQL query (Info). The Time column indicates how
long each query has been executing, allowing you to prioritize the longest-running ones.

If you want to isolate queries that have been running for more than a certain duration, such as 60
seconds, you can filter using the information_schema.processlist view:

This command excludes idle connections and focuses only on active queries that may need
attention.

Detect and terminate long-
running queries

Monitoring Long-Running Queries

SHOW FULL PROCESSLIST;

SELECT * FROM information_schema.processlist

WHERE COMMAND != 'Sleep' AND TIME > 60;

Terminating Long-Running Queries
Safely



Once you’ve identified a query that’s taking too long, MySQL allows you to stop it using its process
ID (Id). This can be done either by cancelling just the query or by killing the entire connection.

To stop the query and leave the connection active, run:

This interrupts the execution of the current query but keeps the client connection open.

If the connection is completely stuck or no longer needed, you can terminate it entirely:

Use this approach with caution, especially in shared environments, as it may interrupt ongoing
operations or cause errors for connected applications.

If MySQL is running in a Docker Compose setup on Elestio, you’ll first need to access the container
to inspect queries. You can do so by opening a shell inside the MySQL container:

Once inside the container, connect to the MySQL service using the credentials defined in your
environment:

After connecting, you can run the same SHOW FULL PROCESSLIST and KILL commands to identify
and handle long-running queries directly from inside the container environment. The logic and
process are identical; the only difference is that you’re executing these operations within the
container shell.

MySQL supports slow query logging, which records statements that exceed a specified execution
time. This is useful for long-term analysis and identifying recurring performance issues.

To enable this feature, update your MySQL configuration file (e.g., my.cnf or mysqld.cnf) with the
following lines:

KILL QUERY <Id>;

KILL CONNECTION <Id>;

Managing Long-Running Queries

docker-compose exec mysql bash

mysql -u $MYSQL_USER -p$MYSQL_PASSWORD $MYSQL_DATABASE

Using Slow Query Logs



This setup logs any query taking longer than one second. Once configured, restart the MySQL
service to apply the changes.

You can then inspect the log with:

To summarize patterns in slow queries, use the mysqldumpslow tool:

This helps you identify repetitive or particularly expensive SQL statements based on execution time
and frequency.

To gain visibility into queries that are consistently slow over time, enable MySQL’s
performance_schema. This built-in feature aggregates statistics about SQL statement execution,
allowing you to pinpoint inefficiencies.

Make sure performance schema is enabled in your config:

Once it’s active, use this query to analyze the most time-consuming query patterns:

This highlights SQL statements that are not just slow once, but frequently expensive, helping you
focus on queries with the biggest overall impact.

[mysqld]

slow_query_log = 1

slow_query_log_file = /var/log/mysql/slow.log

long_query_time = 1

cat /var/log/mysql/slow.log

mysqldumpslow /var/log/mysql/slow.log

Analyzing Expensive Queries Over
Time

[mysqld]

performance_schema = ON

SELECT digest_text, count_star, avg_timer_wait/1000000000000 AS avg_time_sec

FROM performance_schema.events_statements_summary_by_digest

ORDER BY avg_timer_wait DESC

LIMIT 10;



It’s better to prevent long-running queries than to reactively terminate them. A few strategic
adjustments in your query design and database configuration can significantly improve
performance.

Index critical columns used in WHERE, JOIN, and ORDER BY clauses to speed up lookups
and sorting.
Avoid SELECT * in queries — fetch only the necessary columns to reduce result size and
memory usage.
Use EXPLAIN to analyze how a query will be executed and whether indexes are being
used

Limit result sets in user-facing tools or admin dashboards using LIMIT clauses to avoid
returning large datasets unnecessarily.
Set execution time limits at the session level

Implement timeouts in applications and ORMs to prevent client-side hanging when
the database becomes slow.
Monitor actively using slow query logs, processlist views, and the performance schema.
Consider integrating this into your monitoring stack to set up alerts for unusually long or
frequent queries.

Best Practices to Prevent Long-
Running Queries

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

SET SESSION MAX_EXECUTION_TIME = 2000; -- in milliseconds



Running out of disk space in a MySQL environment can result in failed writes, temporary
unavailability, and even data corruption. MySQL requires space not only for storing table data and
indexes, but also for binary logs, temporary tables, transaction logs, and background operations.
On platforms like Elestio, while the infrastructure is managed, users are responsible for monitoring
data growth, managing logs, and planning for scale. This guide covers how to monitor disk usage,
configure alerts, clean up unused data, and follow best practices to prevent full disk scenarios in a
MySQL setup.

Effective disk usage monitoring allows you to detect unexpected growth before it becomes critical.
A combination of operating system-level checks and MySQL-specific queries gives a complete view
of space consumption.

To inspect overall system storage from the terminal or container shell, use:

This command shows available and used space for each mount point. Identify the mount that hosts
your MySQL data directory—usually /var/lib/mysql on Linux systems.

To check database-level usage inside MySQL, connect using the MySQL CLI and run:

This reveals the size of each database schema in megabytes, including both data and indexes. For
insights at the table level, run:

Preventing Full Disk Issues

Monitoring Disk Usage

df -h

SELECT table_schema AS db_name,

       ROUND(SUM(data_length + index_length) / 1024 / 1024, 2) AS size_mb

FROM information_schema.tables

GROUP BY table_schema

ORDER BY size_mb DESC;

SELECT table_name,

       ROUND((data_length + index_length) / 1024 / 1024, 2) AS size_mb

FROM information_schema.tables

WHERE table_schema = 'your_database_name'

ORDER BY size_mb DESC



Replace 'your_database_name' with your actual schema name. This helps pinpoint which tables are
growing fastest or consuming disproportionate space.

Monitoring alone isn’t enough—automatic alerting and cleanup strategies ensure you’re notified in
time and can act without downtime. In Docker Compose setups, container disk usage can be
reviewed using:

This shows disk consumption across images, containers, and volumes. To list and inspect unused
volumes:

And to remove a specific unused volume:

Do not remove any volume actively used by MySQL. Before any cleanup, confirm that your
database volumes are backed up and not mounted by a running service. Within MySQL, temporary
tables, binary logs, and undo logs can consume space rapidly. You can check the binary log
directory and purge old logs manually:

To delete older binary logs and reclaim space:

This deletes logs older than 7 days. Adjust the interval based on your backup retention policy. You
can also automate this behavior using the configuration option:

LIMIT 10;

Configuring Alerts and Cleaning Up
Storage

docker system df

docker volume ls

docker volume rm <volume-name>

SHOW BINARY LOGS;

PURGE BINARY LOGS BEFORE NOW() - INTERVAL 7 DAY;

[mysqld]

expire_logs_days = 7



MySQL uses temporary files for complex queries, especially those involving large sorts or joins
without indexes. These files are stored in the tmpdir directory and can fill up if not managed.
Monitor the temp directory using OS tools:

If temp file usage is consistently high, consider tuning the tmp_table_size and max_heap_table_size
variables to reduce reliance on disk-based temporary tables.

To identify tables with excessive unused space, use:

These tables may benefit from optimization. Reclaim the unused space by running:

This rewrites the table and defragments it, reclaiming disk space. For InnoDB tables, this can also
compact the clustered index.

Long-term disk health in MySQL requires more than just cleanup—it demands strategic design and
active space governance.

Avoid storing large files in the database. Use external object storage for PDFs,
images, or videos and store references (e.g., URLs) in the database.
Implement data retention policies. Archive old transactional data to another schema,
flat files, or cold storage if it’s no longer queried frequently.
Partition large tables using range or list partitioning to separate older data. Partitioning
improves manageability and enables easier purging or archiving.
Rotate logs regularly. Besides binary logs, general logs and error logs should be
rotated using tools like logrotate, especially in containerized environments.
Monitor InnoDB transaction logs (the ib_logfile* files). These are critical for crash
recovery but should not grow indefinitely. If they become too large, you may need to
reconfigure their size safely and restart the service.

Managing & Optimizing Temporary
Files 

du -sh /tmp

SHOW TABLE STATUS WHERE Data_free > 0;

OPTIMIZE TABLE your_table_name;

Best Practices for Disk Space
Management



Store backups offsite. Backups stored on the same volume as your live database can
fill your disk. Use Elestio’s backup tools to export backups to cloud storage or another
disk.



As your MySQL database grows, it’s crucial to track how space is being used across schemas,
tables, and indexes. Uncontrolled growth can slow down queries, consume disk space, and
complicate backups. While Elestio provides managed infrastructure, database storage optimization
is still your responsibility. This guide explains how to inspect database size, find the largest tables
and indexes, detect unused or bloated space, and optimize your data layout in MySQL.

MySQL’s information_schema tables provide insights into how storage is distributed across your
databases. This data helps prioritize cleanup, tuning, or archiving strategies. To calculate the total
size used by each database:

This output includes both table data and indexes, giving you an overview of which databases are
consuming the most space. To identify the largest tables across all schemas:

This helps pinpoint space-heavy tables so you can review their contents, indexes, or retention
policy. To break down data size versus index size for the top tables in a specific schema:

Checking Database Size and
Related Issues

Checking Database and Table Sizes

SELECT table_schema AS db_name,

       ROUND(SUM(data_length + index_length) / 1024 / 1024, 2) AS size_mb

FROM information_schema.tables

GROUP BY table_schema

ORDER BY size_mb DESC;

SELECT table_schema, table_name,

       ROUND((data_length + index_length) / 1024 / 1024, 2) AS total_size_mb

FROM information_schema.tables

ORDER BY total_size_mb DESC

LIMIT 10;

SELECT table_name,

       ROUND(data_length / 1024 / 1024, 2) AS table_mb,

       ROUND(index_length / 1024 / 1024, 2) AS index_mb

FROM information_schema.tables



Replace ' your_database ' with your actual schema name. A high index-to-data ratio could indicate
overly aggressive indexing or opportunities for consolidation.

MySQL tables especially those using the InnoDB storage engine can accumulate unused space over
time due to updates, deletes, or internal fragmentation. This can inflate table size and degrade
performance.

To list tables with free (unused) space that could be reclaimed:

Large data_free values may indicate internal fragmentation or deleted rows that haven’t been
reclaimed yet. You can recover this space using table optimization. To view the number of rows
deleted but not yet reclaimed (estimated):

Check the Rows and Data_free columns for each table. If many rows have been deleted but space
hasn’t shrunk, the table may need to be optimized.

Once bloated or inefficient tables have been identified, MySQL provides several tools for
optimization:

WHERE table_schema = 'your_database'

ORDER BY table_mb DESC

LIMIT 10;

Detecting Bloat and Unused Space

SELECT table_name,

       ROUND(data_free / 1024 / 1024, 2) AS free_space_mb

FROM information_schema.tables

WHERE table_schema = 'your_database'

  AND data_free > 0

ORDER BY free_space_mb DESC

LIMIT 10;

SHOW TABLE STATUS FROM your_database;

Optimizing and Reclaiming Storage

Reclaim free space and defragment tables

OPTIMIZE TABLE your_table;



This command rewrites the table and indexes, reclaiming space and improving performance. It’s
safe for InnoDB tables and especially useful after large DELETE  or UPDATE  operations.

If indexes have grown large due to repeated updates or inserts, rebuilding them can reduce size
and improve query speed. Use:

This effectively recreates the table and all associated indexes, helping reclaim space and improve
internal ordering.

For time-series data or logs, consider deleting or archiving old records:

Use EXPLAIN before executing large deletes to ensure they use indexes efficiently. You may also
consider archiving to flat files or cold-storage tables.

If tables grow continuously (e.g., transaction logs or audit trails), use MySQL’s range partitioning
or list partitioning:

Rebuild fragmented or oversized indexes

ALTER TABLE your_table ENGINE=InnoDB;

Note: Both OPTIMIZE and ALTER ENGINE operations lock the table for a short
period. Run these during maintenance windows if the table is actively queried.“

Remove or archive old rows

DELETE FROM your_table

WHERE created_at < NOW() - INTERVAL 90 DAY;

Partition large tables for better control

CREATE TABLE logs (

  id BIGINT,

  created_at DATE,

  ...

)

PARTITION BY RANGE (YEAR(created_at)) (

  PARTITION p2022 VALUES LESS THAN (2023),

  PARTITION p2023 VALUES LESS THAN (2024),

  PARTITION pmax VALUES LESS THAN MAXVALUE

);



Partitioning allows you to drop old data in chunks without full table scans or long DELETE
operations.

Avoid storing large binary data in MySQL. Store files like images and videos in
external object storage and reference them by URL or metadata.
Monitor binary logs and purge them periodically. If replication or point-in-time
recovery isn’t needed beyond a certain timeframe, add to your config:

Or purge manually:

Track backup file size and location. Ensure backups are stored on a separate volume
or offsite to avoid filling the same disk as your live database.
Enable slow query logging to detect inefficient queries that cause unnecessary data
scans and table growth.
Use monitoring tools (like Netdata, Prometheus exporters, or custom alert scripts) to
track disk consumption trends over time.

Best Practices for Storage
Management

expire_logs_days = 7

PURGE BINARY LOGS BEFORE NOW() - INTERVAL 7 DAY;


