
Overview
How to Connect

Connecting with Node.js
Connecting with Python
Connecting with PHP
Connecting with Go
Connecting with Java

How-To Guides
Database Migration
Cluster Management

MySQL

MySQL is an open-source relational database management system. It supports SQL language and
offers features like transactions, indexing, and replication. MySQL is widely used for web
applications and enterprise solutions due to its performance, reliability, and ease of use. It runs on
multiple operating systems, including Windows, Linux, and macOS.

Key Features of MySQL:

Performance and Scalability: Designed to handle high-volume environments with fast
read and write operations. It supports partitioning, indexing, and query optimization for
better performance.
Replication and High Availability: Offers master-slave and group replication setups,
enabling load balancing, redundancy, and failover support to maintain uptime and data
consistency.
Storage Engines: Provides support for multiple storage engines, including InnoDB for
ACID-compliant transactions and MyISAM for faster read-heavy workloads, giving flexibility
in storage design.
Security Features: Includes features like SSL support, role-based access control, user
privilege management, and data encryption to secure database access and data integrity.
ACID Compliance: With the InnoDB storage engine, MySQL ensures Atomicity,
Consistency, Isolation, and Durability in transactions, which is essential for reliable data
management.
Cross-Platform Support: Compatible with all major operating systems, such as
Windows, Linux, and macOS, allowing flexible deployment options in different
environments.
JSON Support: Provides native JSON data type and functions, enabling semi-structured
data handling within relational structures.
Ease of Use and Tooling: Offers tools like MySQL Workbench and integration with
phpMyAdmin, making it accessible for both developers and administrators to manage
schemas, run queries, and monitor performance.

These features make MySQL a preferred choice for developers and organizations seeking a stable,
efficient, and well-supported database system.

Overview

How to Connect

How to Connect

This guide explains how to establish a connection between a Node.js application and a MySQL
database using the mysql2 package. It walks through the necessary setup, configuration, and
execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a MySQL database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

USER MySQL username, from the Elestio service
overview page

Identifies the database user who has permission to access
the MySQL database.

PASSWOR
D

MySQL password, from the Elestio service
overview page

The authentication key is required for the specified USER
to access the database.

HOST Hostname for MySQL connection, from the
Elestio service overview page

The address of the server hosting the MySQL database.

PORT Port for MySQL connection, from the Elestio
service overview page

The network port used to connect to MySQL. The default
port is 3306.

DATABASE Database Name for MySQL connection, from
the Elestio service overview page

The name of the database being accessed. A MySQL
instance can contain multiple databases.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Node.js

Variables

Install Node.js and NPM
Check if Node.js is installed by running: node -v

If not installed, download it from nodejs.org and install. Additionally, verify npm
installation: npm -v

Install the mysql2 Package
The mysql2 package enables Node.js applications to interact with MySQL. Install it
using: npm install mysql2 --save

Once all prerequisites are set up, create a new file named mysql.js and add the following code:

Prerequisites

Code

const mysql = require("mysql2");

// Database connection configuration
const config = {

https://docs.elest.io/uploads/images/gallery/2025-04/mP2rivimage.png
https://nodejs.org

To execute the script, open the terminal or command prompt and navigate to the directory where
mysql.js is located. Once in the correct directory, run the script with the command:

If the connection is successful, the terminal will display output similar to:

 host: "HOST",
 user: "USER",
 password: "PASSWORD",
 database: "DATABASE",
 port: PORT,
};

// Create a MySQL connection
const connection = mysql.createConnection(config);

// Connect to the database
connection.connect((err) => {
 if (err) {
 console.error("Connection failed:", err);
 return;
 }
 console.log("Connected to MySQL");

 // Run a test query to check the MySQL version
 connection.query("SELECT VERSION() AS version", (err, results) => {
 if (err) {
 console.error("Query execution failed:", err);
 connection.end();
 return;
 }

 console.log("MySQL Version:", results[0]);

 // Close the database connection
 connection.end((err) => {
 if (err) console.error("Error closing connection:", err);
 });
 });
});

node mysql.js

Connected to MySQL
MySQL Version: { version: '8.0.41' }

How to Connect

This guide explains how to establish a connection between a Python application and a MySQL
database using the mysql-connector-python package. It walks through the necessary setup,
configuration, and execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a MySQL database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

USER MySQL username, from the Elestio service
overview page

Identifies the database user who has permission to access
the MySQL database.

PASSWORD MySQL password, from the Elestio service
overview page

The authentication key is required for the specified USER
to access the database.

HOST Hostname for MySQL connection, from the
Elestio service overview page

The address of the server hosting the MySQL database.

PORT Port for MySQL connection, from the Elestio
service overview page

The network port used to connect to MySQL. The default
port is 3306.

DATABASE Database Name for MySQL connection, from
the Elestio service overview page

The name of the database being accessed. A MySQL
instance can contain multiple databases.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Python

Variables

Install Python
Check if Python is installed by running: python --version

If not installed, download it from python.org and install it.

Install the mysql-connector-python Package
The mysql-connector-python package enables Python applications to interact with
MySQL. Install it using: pip install mysql-connector-python

Once all prerequisites are set up, create a new file named mysql_connect.py and add the following
code:

Prerequisites

Code

import mysql.connector

Database connection configuration
config = {

https://docs.elest.io/uploads/images/gallery/2025-04/88Kimage.png
https://www.python.org/downloads/

To execute the script, open the terminal or command prompt and navigate to the directory where
mysql_connect.py is located. Once in the correct directory, run the script with the command:

If the connection is successful, the terminal will display output similar to:

 "host": "HOST",
 "user": "USER",
 "password": "PASSWORD",
 "database": "DATABASE",
 "port": PORT
}

try:
 # Establish the connection
 connection = mysql.connector.connect(**config)
 print("Connected to MySQL")

 # Create a cursor and execute a test query
 cursor = connection.cursor()
 cursor.execute("SELECT VERSION()")

 # Fetch and print the result
 version = cursor.fetchone()
 print("MySQL Version:", version[0])

except mysql.connector.Error as err:
 print("Connection failed:", err)

finally:
 if 'cursor' in locals():
 cursor.close()
 if 'connection' in locals() and connection.is_connected():
 connection.close()
 print("Connection closed")

python mysql_connect.py

Connected to MySQL
MySQL Version: 8.0.41
Connection closed

How to Connect

This guide explains how to establish a connection between a PHP application and a MySQL
database using the mysqli extension. It walks through the necessary setup, configuration, and
execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a MySQL database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variabl
e

Description Purpose

USER MySQL username, from the Elestio service
overview page

Identifies the database user who has permission to access
the MySQL database.

PASSWO
RD

MySQL password, from the Elestio service
overview page

The authentication key is required for the specified USER
to access the database.

HOST Hostname for MySQL connection, from the
Elestio service overview page

The address of the server hosting the MySQL database.

PORT Port for MySQL connection, from the Elestio
service overview page

The network port used to connect to MySQL. The default
port is 3306.

DATABA
SE

Database Name for MySQL connection, from
the Elestio service overview page

The name of the database being accessed. A MySQL
instance can contain multiple databases.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with PHP

Variables

Install PHP
Check if PHP is installed by running: php -v

If not installed, download it from php.net and install.
Make sure the mysqli extension is enabled in your php.ini configuration.

Once all prerequisites are set up, create a new file named mysql_connect.php and add the following
code:

Prerequisites

Code

<?php
$host = "HOST";
$user = "USER";
$password = "PASSWORD";
$database = "DATABASE";
$port = PORT;

// Create connection

https://docs.elest.io/uploads/images/gallery/2025-04/Ukwimage.png
https://www.php.net/downloads

To execute the script, run the PHP server in the directory where mysql_connect.php is located using:

Then, open a browser and go to:

If the connection is successful, the browser will display output similar to:

$conn = new mysqli($host, $user, $password, $database, $port);

// Check connection
if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
}
echo "Connected to MySQL
";

// Run a test query to check the MySQL version
$result = $conn->query("SELECT VERSION()");

if ($result) {
 $row = $result->fetch_assoc();
 echo "MySQL Version: " . $row["VERSION()"];
 $result->free();
} else {
 echo "Query execution failed: " . $conn->error;
}

// Close connection
$conn->close();
?>

php -S localhost:8000

http://localhost:8000/mysql_connect.php

Connected to MySQL
MySQL Version: 8.0.36

How to Connect

This guide explains how to establish a connection between a Go application and a MySQL database
using the go-sql-driver/mysql package. It walks through the necessary setup, configuration, and
execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a MySQL database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

USER MySQL username, from the Elestio service
overview page

Identifies the database user who has permission to access
the MySQL database.

PASSWOR
D

MySQL password, from the Elestio service
overview page

The authentication key is required for the specified USER
to access the database.

HOST Hostname for MySQL connection, from the
Elestio service overview page

The address of the server hosting the MySQL database.

PORT Port for MySQL connection, from the Elestio
service overview page

The network port used to connect to MySQL. The default
port is 3306.

DATABASE Database Name for MySQL connection, from
the Elestio service overview page

The name of the database being accessed. A MySQL
instance can contain multiple databases.

These values can usually be found in the Elestio service overview details, as shown in the image
below. Make sure to take a copy of these details and add them to the code moving ahead.

Connecting with Go

Variables

Install Go
Check if Go is installed by running: go version

If not installed, download it from golang.org and install.

Install the MySQL Driver
Use the following command to install the go-sql-driver/mysql driver: go get -u
github.com/go-sql-driver/mysql

Once all prerequisites are set up, create a new file named mysql_connect.go and add the following
code:

Prerequisites

Code

package main

import (
	"database/sql"
	"fmt"

https://docs.elest.io/uploads/images/gallery/2025-04/SQYimage.png
https://golang.org/dl/

To execute the script, open the terminal and navigate to the directory where mysql_connect.go is
located. Once in the correct directory, run the script with the commands:

	"log"

	_ "github.com/go-sql-driver/mysql"
)

func main() {
	user := "USER"
	password := "PASSWORD"
	host := "HOST"
	port := "PORT"
	database := "DATABASE"

	// Construct DSN (Data Source Name)
	dsn := fmt.Sprintf("%s:%s@tcp(%s:%s)/%s", user, password, host, port, database)

	// Open a connection
	db, err := sql.Open("mysql", dsn)
	if err != nil {
		log.Fatalf("Connection failed: %v", err)
	}
	defer db.Close()

	// Ping to verify connection
	if err := db.Ping(); err != nil {
		log.Fatalf("Ping failed: %v", err)
	}
	fmt.Println("Connected to MySQL")

	// Run a test query to check the MySQL version
	var version string
	err = db.QueryRow("SELECT VERSION()").Scan(&version)
	if err != nil {
		log.Fatalf("Query execution failed: %v", err)
	}
	fmt.Printf("MySQL Version: %s\n", version)
}

If the connection is successful, the terminal will display output similar to:

go mod init example.com/mysqlconnect
go run mysql_connect.go

Connected to MySQL
MySQL Version: 8.0.36

How to Connect

This guide explains how to establish a connection between a Java application and a MySQL
database using the mysql-connector-j JDBC driver. It walks through the necessary setup,
configuration, and execution of a simple SQL query.

Certain parameters must be provided to establish a successful connection to a MySQL database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

USER MySQL username, from the Elestio service
overview page

Identifies the database user who has permission to access
the MySQL database.

PASSWOR
D

MySQL password, from the Elestio service
overview page

The authentication key is required for the specified USER
to access the database.

HOST Hostname for MySQL connection, from the
Elestio service overview page

The address of the server hosting the MySQL database.

PORT Port for MySQL connection, from the Elestio
service overview page

The network port used to connect to MySQL. The default
port is 3306.

DATABASE Database Name for MySQL connection, from
the Elestio service overview page

The name of the database being accessed. A MySQL
instance can contain multiple databases.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Java

Variables

Install Java
Check if Java is installed by running: java -version .
If not installed, download it from oracle.com or install OpenJDK.

Install MySQL Connector/J
Download the latest version mysql-connector-j from the official MySQL site.

Once all prerequisites are set up, create a new file named MySQLConnect.java and add the following
code:

Prerequisites

Code

import java.sql.*;
import java.util.*;

public class MySQLConnect {
 public static void main(String[] args) {

https://docs.elest.io/uploads/images/gallery/2025-04/Siiimage.png
https://www.oracle.com/java/technologies/javase-downloads.html
https://dev.mysql.com/downloads/connector/j/

To compile and run the Java program, use the following commands in your terminal:

If the connection is successful, the terminal will display output similar to:

 Map<String, String> config = new HashMap<>();
 for (int i = 0; i < args.length - 1; i += 2)
 config.put(args[i], args[i + 1]);

 String url = String.format("jdbc:mysql://%s:%s/%s?useSSL=true",
 config.get("-host"), config.get("-port"), config.get("-database"));

 try {
 Class.forName("com.mysql.cj.jdbc.Driver");
 try (Connection conn = DriverManager.getConnection(url, config.get("-username"), config.get("-
password"));
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT VERSION()")) {
 System.out.println("Connected to MySQL");
 if (rs.next()) System.out.println("MySQL Version: " + rs.getString(1));
 }
 } catch (Exception e) {
 System.err.println("Connection error: " + e.getMessage());
 }
 }
}

javac MySQLConnect.java && java -cp mysql-connector-j-9.3.0.jar:. MySQLConnect -host HOST -port PORT -
database DATABASE -username avnadmin -password PASSWORD

Connected to MySQL
MySQL Version: 8.0.41

How-To Guides

Database Migration

Cluster Management

