
As your MySQL database grows, it’s crucial to track how space is being used across schemas,
tables, and indexes. Uncontrolled growth can slow down queries, consume disk space, and
complicate backups. While Elestio provides managed infrastructure, database storage optimization
is still your responsibility. This guide explains how to inspect database size, find the largest tables
and indexes, detect unused or bloated space, and optimize your data layout in MySQL.

MySQL’s information_schema tables provide insights into how storage is distributed across your
databases. This data helps prioritize cleanup, tuning, or archiving strategies. To calculate the total
size used by each database:

This output includes both table data and indexes, giving you an overview of which databases are
consuming the most space. To identify the largest tables across all schemas:

This helps pinpoint space-heavy tables so you can review their contents, indexes, or retention
policy. To break down data size versus index size for the top tables in a specific schema:

Checking Database Size and
Related Issues

Checking Database and Table
Sizes

SELECT table_schema AS db_name,
 ROUND(SUM(data_length + index_length) / 1024 / 1024, 2) AS size_mb
FROM information_schema.tables
GROUP BY table_schema
ORDER BY size_mb DESC;

SELECT table_schema, table_name,
 ROUND((data_length + index_length) / 1024 / 1024, 2) AS total_size_mb
FROM information_schema.tables
ORDER BY total_size_mb DESC
LIMIT 10;

Replace ' your_database ' with your actual schema name. A high index-to-data ratio could indicate
overly aggressive indexing or opportunities for consolidation.

MySQL tables especially those using the InnoDB storage engine can accumulate unused space over
time due to updates, deletes, or internal fragmentation. This can inflate table size and degrade
performance.

To list tables with free (unused) space that could be reclaimed:

Large data_free values may indicate internal fragmentation or deleted rows that haven’t been
reclaimed yet. You can recover this space using table optimization. To view the number of rows
deleted but not yet reclaimed (estimated):

Check the Rows and Data_free columns for each table. If many rows have been deleted but space
hasn’t shrunk, the table may need to be optimized.

SELECT table_name,
 ROUND(data_length / 1024 / 1024, 2) AS table_mb,
 ROUND(index_length / 1024 / 1024, 2) AS index_mb
FROM information_schema.tables
WHERE table_schema = 'your_database'
ORDER BY table_mb DESC
LIMIT 10;

Detecting Bloat and Unused
Space

SELECT table_name,
 ROUND(data_free / 1024 / 1024, 2) AS free_space_mb
FROM information_schema.tables
WHERE table_schema = 'your_database'
 AND data_free > 0
ORDER BY free_space_mb DESC
LIMIT 10;

SHOW TABLE STATUS FROM your_database;

Once bloated or inefficient tables have been identified, MySQL provides several tools for
optimization:

This command rewrites the table and indexes, reclaiming space and improving performance. It’s
safe for InnoDB tables and especially useful after large DELETE or UPDATE operations.

If indexes have grown large due to repeated updates or inserts, rebuilding them can reduce size
and improve query speed. Use:

This effectively recreates the table and all associated indexes, helping reclaim space and improve
internal ordering.

For time-series data or logs, consider deleting or archiving old records:

Use EXPLAIN before executing large deletes to ensure they use indexes efficiently. You may also
consider archiving to flat files or cold-storage tables.

If tables grow continuously (e.g., transaction logs or audit trails), use MySQL’s range partitioning
or list partitioning:

Optimizing and Reclaiming
Storage

Reclaim free space and defragment tables

OPTIMIZE TABLE your_table;

Rebuild fragmented or oversized indexes

ALTER TABLE your_table ENGINE=InnoDB;

Note: Both OPTIMIZE and ALTER ENGINE operations lock the table for a short
period. Run these during maintenance windows if the table is actively queried.“

Remove or archive old rows

DELETE FROM your_table
WHERE created_at < NOW() - INTERVAL 90 DAY;

Partition large tables for better control

Revision #1
Created 30 April 2025 09:06:20 by kaiwalya
Updated 30 April 2025 09:10:43 by kaiwalya

Partitioning allows you to drop old data in chunks without full table scans or long DELETE
operations.

Avoid storing large binary data in MySQL. Store files like images and videos in
external object storage and reference them by URL or metadata.
Monitor binary logs and purge them periodically. If replication or point-in-time
recovery isn’t needed beyond a certain timeframe, add to your config:

Or purge manually:

Track backup file size and location. Ensure backups are stored on a separate volume
or offsite to avoid filling the same disk as your live database.
Enable slow query logging to detect inefficient queries that cause unnecessary data
scans and table growth.
Use monitoring tools (like Netdata, Prometheus exporters, or custom alert scripts) to
track disk consumption trends over time.

CREATE TABLE logs (
 id BIGINT,
 created_at DATE,
 ...
)
PARTITION BY RANGE (YEAR(created_at)) (
 PARTITION p2022 VALUES LESS THAN (2023),
 PARTITION p2023 VALUES LESS THAN (2024),
 PARTITION pmax VALUES LESS THAN MAXVALUE
);

Best Practices for Storage
Management

expire_logs_days = 7

PURGE BINARY LOGS BEFORE NOW() - INTERVAL 7 DAY;

