Creating a Database

MySQL is a leading open-source relational database management system (RDBMS) known for its
reliability, scalability, and ease of use. Setting up a database properly in MySQL is crucial for
ensuring long-term maintainability, performance, and security of applications. This guide walks
through different ways to create a MySQL database: using the MySQL CLI, using Docker containers,
and using the mysqgladmin tool. It also emphasises best practices that should be followed at each
step.

Creating a Database Using MySQL
CLI

The most common and straightforward way to create a database is by using the MySQL command-
line interface (mysql client). First, a connection must be established to the MySQL server using an
account with appropriate privileges, typically the root account or a designated administrative user.

Connect to MySQL.:

Connect to MySQL:

mysql -u root -p

To connect to a remote MySQL database using the MySQL CLI, you need to specify the host’'s IP
address or domain name using the -h flag along with the username and password:

mysql -h <remote host> -P <port> -u <username> -p

You will be prompted to enter the password for the root user. Upon successful login, the MySQL
shell opens where SQL queries can be executed.

Create a New Database

To create a database with default settings:

CREATE DATABASE mydatabase;

However, it is a best practice to explicitly define the character set and collation. This prevents
potential problems with encoding and sorting, especially when dealing with multilingual data or
special characters. The recommended character set for modern applications is utf8mb4, which fully
supports Unicode.



Create a database with specific character set and collation:

CREATE DATABASE mydatabase CHARACTER SET utf8mb4 COLLATE utf8mb4 unicode ci;

You can verify that the database was created by listing all databases:

SHOW DATABASES;

Explicitly setting the character set ensures data consistency and minimizes future migration issues.
Additionally, defining these settings at creation time avoids relying on server defaults, which can
vary across different environments.

Creating a Database in Docker

Docker is a tool that helps run applications in isolated environments called containers. A MySQL
container provides a self-contained database instance that can be quickly deployed and managed.
If you are running MySQL inside a Docker container, follow these steps:

Access Elestio Terminal

Head over to your deployed MySQL service dashboard and head over to Tools > Terminal. Use
the credentials provided there to log in to your terminal.



Terminal

Check all the consoles of your Virtual Machine
Access link:

https://mysqgl-wgfecl-u?774.vm.elestio.app:18344/

User:

root

Password:

Ak

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

cd /opt/app/

Access the MySQL Container Shell

Instead of pulling an image or running the container manually, use Docker Compose to interact
with your running container. As you are using Elestio, it will already be a Docker compose:

docker-compose exec mysql bash

Inside the container, access the MySQL shell:
mysql -u root -p

Create Database

Now, to create a database, use the following command. This command tells MySQL to create a new
logical database called mydatabase . By default, it inherits settings like encoding and collation from
the template database (templatel), unless specified otherwise.


https://docs.elest.io/uploads/images/gallery/2025-04/LoCimage.png

CREATE DATABASE mydatabase;

Creating a Database Using
mysqladmin

The mysqladmin utility provides a non-interactive way to create databases. It is particularly useful for

automation scripts and quick administrative tasks.

To create a database:

mysgladmin -h <host> -P <port> -u root -p create mydatabase
One limitation of mysqladmin is that it does not allow specifying character set and collation at

creation time. Therefore, if these settings need to be controlled explicitly (which is generally
recommended), it is better to use the mysql CLI instead.

Before using mysqladmin, ensure the MySQL server is running. On traditional installations, check
the status:

sudo systemctl status mysql

If the service is not active, it can be started with:

sudo systemctl start mysql

Best Practices for Creating
Databases

Use Meaningful Names

Choosing clear and descriptive names for databases helps in organisation and long-term
maintenance. Avoid generic names like testdb or databasel, as they do not convey the database’s
role or content. Instead, choose names that reflect the kind of data stored or the application it

supports, such as customer_data, sales_records, or analytics_db. Meaningful names improve clarity

for developers, DBAs, and future maintainers who need to quickly understand the purpose of each
database without relying heavily on documentation.

Follow Naming Conventions



A standardized naming convention across all environments and teams simplifies database
management and reduces confusion. MySQL database names are case-sensitive on Unix-based
systems, so consistent use of lowercase letters is recommended. Use underscores to separate
words (e.g., order_details) rather than camelCase or spaces. This avoids the need for extra quoting
in SQL queries and prevents platform-specific bugs. Additionally, avoid using reserved MySQL
keywords or special characters in database names, as these can lead to parsing errors and
unexpected behaviour.

Restrict User Permissions

Granting only the minimum required permissions significantly strengthens database security and
reduces the likelihood of accidental damage or data leaks. Following the Principle of Least Privilege,
reporting users should only be given SELECT access, while application users may require SELECT,
INSERT, UPDATE, and DELETE rights. Only a few trusted administrative users should have powerful
privileges like ALTER, DROP, Or GRANT. Avoid assigning superuser access unless absolutely necessary.
Creating user roles or groups with defined scopes can help standardise permission levels across
teams and services.

Enable Backups

Regular backups are critical to ensure business continuity and safeguard against data loss from
unexpected events such as accidental deletions, server crashes, or software bugs. MySQL provides
tools like mysgldump for logical backups of individual databases, and mysqglpump or xtrabackup for
more advanced use cases. It's good practice to schedule automated backups using cron jobs or
database orchestration tools. Backup files should be stored securely and regularly tested for
restoration to verify that the process works as expected during emergencies.

Monitor Performance

Ongoing performance monitoring is essential to maintain the responsiveness and stability of
MySQL databases. Monitoring tools like performance_schema, information schema, or external platforms
like Percona Monitoring and Management (PMM) help identify slow queries, locked transactions,
and system resource bottlenecks. Use EXPLAIN and ANALYZE to understand query plans and optimize
indexes. Keeping an eye on connection stats, query latency, and buffer pool usage allows for timely
tuning and ensures efficient database operations at scale.

Common Issues and Their Solutions

Here’s a table summarizing common problems faced during database creation and how to resolve
them:

Issue Cause Solution

ERROR 1044 (42000): Access denied The connected user does not have the | Connect as a user with administrative
for user CREATE privilege. privileges or grant necessary
permissions.




Issue

Cause

Solution

ERROR 1007 (HY000): Can't create
database; database exists

Attempting to create a database that
already exists.

Choose a different name or drop the
existing database if appropriate using
DROP DATABASE.

Can't connect to MySQL server on
'localhost!

MySQL server is not running, or
incorrect connection parameters are
used.

Start the MySQL service and verify
network and authentication
parameters.

Collation or character set issues later
in application

Database created without explicitly
specifying character set or collation.

Always specify utf8mb4 and a
collation like utf8mb4_unicode_ci
during database creation.

Docker MySQL container refuses
connections

MySQL container not ready or port
mappings not correctly set.

Check container logs with docker-
compose logs mysql and verify port
exposure settings in docker-
compose.yml.

Revision #1

Created 29 April 2025 06:17:48 by kaiwalya
Updated 29 April 2025 08:05:35 by kaiwalya




