
Long-running queries in MySQL can degrade database performance by consuming system
resources like CPU, memory, and disk I/O for extended periods. In production environments such as
Elestio, it’s essential to monitor and manage these queries effectively to maintain responsiveness
and avoid service disruptions. This guide explains how to detect, analyze, and safely terminate
long-running queries in MySQL using terminal tools, Docker Compose setups, and built-in logging
features. It also includes preventive strategies for avoiding such queries in the future.

When connected to your MySQL instance via the terminal using the MySQL CLI, you can inspect
active sessions and identify queries that have been running for an excessive duration. This is useful
for spotting inefficient or blocked operations.

To check all current sessions and running queries, execute:

This will return all client connections along with their process ID (Id), command type (Command),
execution time in seconds (Time), and the actual SQL query (Info). The Time column indicates how
long each query has been executing, allowing you to prioritize the longest-running ones.

If you want to isolate queries that have been running for more than a certain duration, such as 60
seconds, you can filter using the information_schema.processlist view:

This command excludes idle connections and focuses only on active queries that may need
attention.

Detect and terminate long-
running queries

Monitoring Long-Running
Queries

SHOW FULL PROCESSLIST;

SELECT * FROM information_schema.processlist
WHERE COMMAND != 'Sleep' AND TIME > 60;

Once you’ve identified a query that’s taking too long, MySQL allows you to stop it using its process
ID (Id). This can be done either by cancelling just the query or by killing the entire connection.

To stop the query and leave the connection active, run:

This interrupts the execution of the current query but keeps the client connection open.

If the connection is completely stuck or no longer needed, you can terminate it entirely:

Use this approach with caution, especially in shared environments, as it may interrupt ongoing
operations or cause errors for connected applications.

If MySQL is running in a Docker Compose setup on Elestio, you’ll first need to access the container
to inspect queries. You can do so by opening a shell inside the MySQL container:

Once inside the container, connect to the MySQL service using the credentials defined in your
environment:

After connecting, you can run the same SHOW FULL PROCESSLIST and KILL commands to identify
and handle long-running queries directly from inside the container environment. The logic and
process are identical; the only difference is that you’re executing these operations within the
container shell.

Terminating Long-Running
Queries Safely

KILL QUERY <Id>;

KILL CONNECTION <Id>;

Managing Long-Running
Queries

docker-compose exec mysql bash

mysql -u $MYSQL_USER -p$MYSQL_PASSWORD $MYSQL_DATABASE

MySQL supports slow query logging, which records statements that exceed a specified execution
time. This is useful for long-term analysis and identifying recurring performance issues.

To enable this feature, update your MySQL configuration file (e.g., my.cnf or mysqld.cnf) with the
following lines:

This setup logs any query taking longer than one second. Once configured, restart the MySQL
service to apply the changes.

You can then inspect the log with:

To summarize patterns in slow queries, use the mysqldumpslow tool:

This helps you identify repetitive or particularly expensive SQL statements based on execution time
and frequency.

To gain visibility into queries that are consistently slow over time, enable MySQL’s
performance_schema. This built-in feature aggregates statistics about SQL statement execution,
allowing you to pinpoint inefficiencies.

Make sure performance schema is enabled in your config:

Using Slow Query Logs

[mysqld]
slow_query_log = 1
slow_query_log_file = /var/log/mysql/slow.log
long_query_time = 1

cat /var/log/mysql/slow.log

mysqldumpslow /var/log/mysql/slow.log

Analyzing Expensive Queries
Over Time

[mysqld]
performance_schema = ON

Revision #1
Created 30 April 2025 08:54:52 by kaiwalya
Updated 30 April 2025 08:58:24 by kaiwalya

Once it’s active, use this query to analyze the most time-consuming query patterns:

This highlights SQL statements that are not just slow once, but frequently expensive, helping you
focus on queries with the biggest overall impact.

It’s better to prevent long-running queries than to reactively terminate them. A few strategic
adjustments in your query design and database configuration can significantly improve
performance.

Index critical columns used in WHERE, JOIN, and ORDER BY clauses to speed up lookups
and sorting.
Avoid SELECT * in queries — fetch only the necessary columns to reduce result size and
memory usage.
Use EXPLAIN to analyze how a query will be executed and whether indexes are being
used

Limit result sets in user-facing tools or admin dashboards using LIMIT clauses to avoid
returning large datasets unnecessarily.
Set execution time limits at the session level

Implement timeouts in applications and ORMs to prevent client-side hanging when
the database becomes slow.
Monitor actively using slow query logs, processlist views, and the performance schema.
Consider integrating this into your monitoring stack to set up alerts for unusually long or
frequent queries.

SELECT digest_text, count_star, avg_timer_wait/1000000000000 AS avg_time_sec
FROM performance_schema.events_statements_summary_by_digest
ORDER BY avg_timer_wait DESC
LIMIT 10;

Best Practices to Prevent
Long-Running Queries

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

SET SESSION MAX_EXECUTION_TIME = 2000; -- in milliseconds

