
Slow queries can degrade the performance of your MySQL-based application, leading to lag,
timeouts, or higher resource consumption. On Elestio, whether you’re accessing MySQL via
terminal, inside a Docker Compose container, or using MySQL CLI tools, there are structured ways
to inspect and optimize query performance. This guide covers how to analyze slow queries,
interpret execution plans, and apply performance improvements using techniques like EXPLAIN,
slow query logs, and schema analysis.

When connected to a MySQL server from a terminal, you can use native SQL statements and built-
in features to analyze the performance of specific queries. This is ideal for diagnosing issues in
staging or production without needing container access.

To begin, log in to your MySQL server using the MySQL client:

You’ll be prompted for the password. Once inside, you can start analyzing queries.

The EXPLAIN keyword shows how MySQL plans to execute a query. It breaks down how tables are
accessed and joined, whether indexes are used, and how many rows are expected to be scanned.

Review the type, key, rows, and Extra columns in the output. Look out for full table scans (type =
ALL), which often signal that an index may be missing.

To view which queries are actively running and their duration, use:

Identifying Slow Queries

Analyzing Slow Queries from the
Terminal

Connect to your MySQL instance via terminal

mysql -u <username> -h <host> -p

Use EXPLAIN to view the execution plan

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

Check current running queries

SHOW FULL PROCESSLIST;

This can help identify long-running or stuck queries in real time.

If your MySQL service is running inside a Docker Compose setup (as Elestio uses), it may not be
directly exposed on your host. In this case, analysis must be done from within the container.

Open a shell inside your MySQL container using Docker Compose:

This gives you a command-line shell inside the container.

Once inside the container, use the environment-defined credentials to access the database:

This gives you the same SQL interface as from the host terminal, enabling you to use EXPLAIN,
SHOW PROCESSLIST, and performance schema tools.

MySQL can log slow queries to a file. This must be enabled in your container’s my.cnf configuration
file:

After applying these settings, restart the container. Slow queries taking longer than
long_query_time (in seconds) will be logged.

You can then inspect the log file:

Analyzing Inside Docker Compose

Access the MySQL container

docker-compose exec mysql bash

Connect to MySQL from inside the container

mysql -u $MYSQL_USER -p$MYSQL_PASSWORD $MYSQL_DATABASE

Enable and view the slow query log

[mysqld]

slow_query_log = 1

slow_query_log_file = /var/log/mysql/slow.log

long_query_time = 1

cat /var/log/mysql/slow.log

Using Performance Schema

MySQL’s performance schema and built-in commands help track query statistics over time. This is
useful when diagnosing repeat offenders or inefficient patterns.

Ensure performance_schema is enabled in your MySQL configuration:

Restart the container after updating the config.

This SQL query shows which SQL statements have the longest average execution times:

This helps you find the most resource-intensive queries over time.

Reading the output of EXPLAIN is essential to understand how MySQL processes your query and
whether it is using indexes efficiently.

Key output fields to interpret:

type: The join type. Prefer ref, range, or const over ALL (which indicates a full table scan).
key: The index used for the query. A NULL value may indicate a missing index.
rows: Estimated number of rows MySQL will scan. Lower is better.
Extra: Look for warnings like Using temporary or Using filesort, which may suggest
suboptimal queries.

Use EXPLAIN ANALYZE (available in MySQL 8.0+) to see actual vs. estimated performance:

Enable the performance schema (if not already)

[mysqld]

performance_schema=ON

Identify top queries using statement summaries

SELECT digest_text, count_star, avg_timer_wait/1000000000000 AS avg_time_sec

FROM performance_schema.events_statements_summary_by_digest

ORDER BY avg_timer_wait DESC

LIMIT 10;

Understanding the MySQL Execution
Plan

EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 42;

Revision #2
Created 30 April 2025 08:35:19 by kaiwalya
Updated 30 April 2025 08:59:03 by kaiwalya

Once you’ve identified inefficient queries, optimization involves rewriting queries, adding indexes,
or adjusting the schema.

Common techniques:

Add indexes to columns frequently used in WHERE, JOIN, and ORDER BY.
Avoid SELECT* : Only fetch columns you need to reduce I/O.
Use LIMIT when fetching preview data or paginated results.
Re-write joins or subqueries to reduce temporary tables and filesort operations.
Update statistics with ANALYZE TABLE:

Optimizing Queries for Better
Performance

ANALYZE TABLE orders;

