
As your PostgreSQL database grows over time, it’s important to monitor its size and identify what
parts of the database consume the most space. Unmanaged growth can lead to performance
issues, disk exhaustion, and backup delays. On Elestio, where PostgreSQL is hosted in a managed
environment, you can use SQL and command-line tools to measure database usage, analyze large
objects, and troubleshoot storage problems. This guide explains how to check database size, detect
bloated tables and indexes, and optimize storage usage efficiently.

PostgreSQL provides built-in functions to report the size of the current database, its individual
schemas, tables, and indexes. These functions are useful for understanding where most of your
storage is being used and planning cleanup or archiving strategies.

To check the total size of the active database:

This returns a human-readable value like “2 GB”, indicating how much space the entire database
consumes on disk.

To list the largest tables in your schema:

This helps you identify which tables take up the most space, including indexes and TOAST (large
field) data.

To break down table vs index size separately:

Checking Database Size and
Related Issues

Checking Database and Table Sizes

SELECT pg_size_pretty(pg_database_size(current_database()));

SELECT relname AS table, pg_size_pretty(pg_total_relation_size(relid)) AS total_size

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_total_relation_size(relid) DESC

LIMIT 10;

SELECT relname AS object,

 pg_size_pretty(pg_relation_size(relid)) AS table_size,

 pg_size_pretty(pg_indexes_size(relid)) AS index_size

This distinction allows you to assess whether most space is used by raw table data or indexes,
which can inform optimization decisions.

Database bloat occurs when PostgreSQL retains outdated or deleted rows due to its MVCC model.
This is common in high-write tables and can lead to wasted space and degraded performance.
Bloated indexes and tables are often invisible unless explicitly checked. To estimate bloat at a
table level, you can use a community query like this:

This query calculates how much of a table’s total size is not accounted for by its base data—higher
percentages suggest unused or dead space. You can also check dead tuples directly:

A high count of dead tuples suggests that autovacuum might not be keeping up and that a manual
VACUUM could help.

Once you’ve identified large or bloated objects, the next step is to optimize them. PostgreSQL
offers tools like VACUUM, REINDEX, and CLUSTER to reclaim space and improve storage efficiency.
These commands must be run with care to avoid locking critical tables during active hours. To
reclaim dead tuples and update statistics:

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_relation_size(relid) DESC

LIMIT 10;

Identifying Bloat and Inefficiencies

SELECT schemaname, relname, round(100 * (pg_total_relation_size(relid) -

pg_relation_size(relid)) / pg_total_relation_size(relid), 2) AS bloat_pct

FROM pg_catalog.pg_statio_user_tables

ORDER BY bloat_pct DESC

LIMIT 10;

SELECT relname, n_dead_tup

FROM pg_stat_user_tables

ORDER BY n_dead_tup DESC

LIMIT 10;

Optimizing and Reducing Database
Size

Revision #1
Created 9 April 2025 10:58:45 by kaiwalya
Updated 9 April 2025 15:57:50 by kaiwalya

This command removes dead rows and refreshes query planning statistics, which helps
performance and frees up storage. To shrink large indexes that aren’t cleaned automatically, use:

This recreates the table’s indexes from scratch and can free up disk space if indexes are
fragmented or bloated. If a table is heavily bloated and full table rewrites are acceptable during
maintenance, use:

This rewrites the entire table based on an index order and reclaims space similar to VACUUM FULL,
but with more control.

Additionally, removing or archiving old data from large time-based tables can reduce total size.
Consider partitioning large tables to manage this process more efficiently.

VACUUM ANALYZE;

REINDEX TABLE <table_name>;

CLUSTER <table_name>;

