
Regular backups are a key part of managing a PostgreSQL deployment. While Elestio provides
automated backups by default, you may want to perform manual backups for specific reasons,
such as preparing for a major change, keeping a local copy, or testing backup automation. This
guide walks through how to create PostgreSQL backups on Elestio using multiple approaches. It
covers manual backups through the Elestio dashboard, using PostgreSQL CLI tools, and Docker
Compose-based setups. It also includes advice for backup storage, retention policies, and
automation using scheduled jobs.

If you’re using Elestio’s managed PostgreSQL service, the easiest way to create a manual backup is
through the dashboard. This built-in method creates a full snapshot of your current database state
and stores it within Elestio’s infrastructure. These backups are tied to your service and can be
restored through the same interface. This option is recommended when you need a quick,
consistent backup without using any terminal commands.

To trigger a manual backup from the Elestio dashboard:

1. Log in to the Elestio dashboard and navigate to your PostgreSQL service/cluster.
2. Click the Backups tab in the service menu.
3. Select Back up now to generate a snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

PostgreSQL provides a set of command-line tools that are useful when you want to create backups
from your terminal. These include pg_dump exporting the database, psql for basic connectivity and
queries, and pg_restore restoring backups. This approach is useful when you need to store backups
locally or use them with custom automation workflows. The CLI method gives you full control over
the backup format and destination.

To use the CLI tools, you’ll need the database host, port, name, username, and password. These
details can be found in the Overview section of your PostgreSQL service in the Elestio dashboard.

Manual Backups Using PostgreSQL
CLI

Collect Database Connection Info

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-08-at-1-50-48-pm.jpg

Use pg_dump to export the database in a custom format. This format is flexible and preferred for
restore operations using pg_restore. Replace the values with actual values that you copied from the
Elestio overview page.

This command connects to the Elestio database and creates a .dump file containing your data. You
can use the -v flag for verbose output and confirm that the backup completed successfully.

If your PostgreSQL database is deployed through a Docker Compose setup on Elestio, you can run
the pg_dump command from within the running container. This is useful when the tools are installed

Back Up with pg_dump

PGPASSWORD='<your-db-password>' pg_dump \

 -U <username> \

 -h <host> \

 -p <port> \

 -Fc -v \

 -f <output_file>.dump \

 <database_name>

Manual Backups Using Docker
Compose

https://docs.elest.io/uploads/images/gallery/2025-04/DKCimage.png

inside the container environment and you want to keep everything self-contained. The backup can
be created inside the container and then copied to your host system for long-term storage or
transfer.

Head over to your deployed PostgreSQL service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

This command runs pg_dump from inside the container and saves the backup to a file in /tmp. Make
sure you have the following things in command in your env, else replace them with actual values
and not the env variables.

Access Elestio Terminal

cd /opt/app/

Run pg_dump Inside the Container

docker-compose exec postgres \

 bash -c "PGPASSWORD='\$POSTGRES_PASSWORD' pg_dump -U \$POSTGRES_USER -Fc -v \$POSTGRES_DB >

/tmp/manual_backup.dump"

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-08-at-12-58-07-pm.jpg

This assumes that environment variables like POSTGRES_USER, POSTGRES_PASSWORD, and POSTGRES_DB are
defined in your Compose setup.

After creating the backup inside the container, use docker cp to copy the file to your host machine.

This creates a local copy of the backup file, which you can then upload to external storage or keep
for versioned snapshots.

Once backups are created, they should be stored securely and managed with a clear retention
policy. Proper naming, encryption, and rotation reduce the risk of data loss and help during
recovery. Use timestamped filenames to identify when the backup was created. External storage
services such as AWS S3, Backblaze B2, or an encrypted server volume are recommended for long-
term storage.

Here are some guidelines to follow:

Name your backups clearly: mydb_backup_2024_04_02.dump.
Store in secure, off-site storage if possible.
Retain 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Remove old backups automatically to save space.

By combining storage hygiene with regular scheduling, you can maintain a reliable backup history
and reduce manual effort.

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Open your crontab file for editing:

Copy Backup to Host

docker cp $(docker-compose ps -q postgres):/tmp/manual_backup.dump ./manual_backup.dump

Backup Storage & Retention Best
Practices

Automating Manual Backups (cron)

Example: Daily Backup at 2 AM

Revision #1
Created 8 April 2025 08:19:36 by kaiwalya
Updated 8 April 2025 09:36:38 by kaiwalya

Then add a job like the following:

Make sure the /backups/ directory exists and is writable by the user running the job. You can also
compress the backup and upload it to a remote destination as part of the same script.

crontab -e

0 2 * * * PGPASSWORD='mypassword' pg_dump -U elestio -h db-xyz.elestio.app -p 5432 -Fc -f

/backups/backup_$(date +\%F).dump mydatabase

