Database Migration

e Cloning a Service to Another Provider or Region

e Database Migration Services for Redis

e Manual Redis Migration Using redis-cli and RDB Files

Cloning a Service to Another
Provider or Region

Migrating or cloning services across cloud providers or geographic regions is a critical part of
modern infrastructure management. Whether you’re optimizing for latency, preparing for disaster
recovery, meeting regulatory requirements, or simply switching providers, a well-planned migration
ensures continuity, performance, and data integrity. This guide outlines a structured methodology
for service migration, applicable to most cloud-native environments.

Pre-Migration Preparation

Before initiating a migration, thorough planning and preparation are essential. This helps avoid
unplanned downtime, data loss, or misconfiguration during the move:

e Evaluate the Current Setup: Begin by documenting the existing service’s configuration.
This includes runtime environments (container images, platform versions), persistent data
(databases, object storage), network rules (ports, firewalls), and application dependencies
(APlIs, credentials, linked services).

o Define the Migration Target: Choose the new cloud provider or region you plan to
migrate to. Confirm service compatibility, resource limits, and geographic latency
requirements. If you're replicating an existing environment, make sure the target region
supports the same compute/storage features and versions.

e Provision the Target Environment: Set up the target infrastructure where the service
will be cloned. This could involve creating new Kubernetes clusters, VM groups, container
registries, databases, or file storage volumes depending on your stack.

e Backup the Current Service: Always create a full backup or snapshot of the current
service and its associated data before proceeding. This acts as a rollback point in case of
migration issues and ensures recovery in the event of failure.

Cloning Execution

The first step in executing a clone is to replicate the configuration of the original service in the
target environment. This involves deploying the same container image or service binary using the
same runtime settings. If you're using Kubernetes or container orchestrators, this can be done via
Helm charts or declarative manifests. Pay close attention to environment variables, secrets,
mounted paths, storage class definitions, and health check configurations to ensure a consistent
runtime environment.

Next, you'll need to migrate any persistent data tied to the service. For file-based storage, tools
like rsync or rclone are effective for copying volume contents over SSH or cloud storage backends.
It's crucial to verify compatibility across disk formats, database versions, and encoding standards
to avoid corruption or mismatched behavior.

After replicating the environment and data, it's important to validate the new service in isolation.
This means confirming that all application endpoints respond as expected, background tasks or
cron jobs are functioning, and third-party integrations (e.g., payment gateways, S3 buckets) are
accessible. You should test authentication flows, data read/write operations, and retry logic to
ensure the new service is functionally identical. Use observability tools to monitor resource
consumption and application logs during this stage.

Once validation is complete, configure DNS and route traffic to the new environment. This might
involve updating DNS A or CNAME records, changing cloud load balancer configurations, or
applying new firewall rules. For high-availability setups, consider using health-based routing or
weighted DNS to gradually transition traffic from the old instance to the new one.

Post-Migration Validation and
Optimization

Once the new environment is live and receiving traffic, focus on optimizing and securing the setup:

Validate Application Functionality: Test all integrations, user workflows, and
background jobs to confirm proper behavior. Review logs for silent errors or timeouts.
Ensure all applications pointing to the service are updated with the new URL or connection
string.

e Monitor Performance: Analyze load, CPU, memory, and storage utilization. Scale
resources as needed, or optimize runtime settings for the new provider/region. Enable
autoscaling where applicable.

e Secure the Environment: Implement firewall rules, IP restrictions, and access controls.
Rotate secrets and validate that no hardcoded credentials or endpoints point to the old
service.

e Cleanup and Documentation: Once validated, decommission the old setup safely.

Update internal documentation with new deployment details, endpoint addresses, and any

configuration changes.

Benefits of Cloning

Cloning a database service, particularly for engines like Redis offers several operational and
strategic advantages. It allows teams to test schema migrations, version upgrades, or major
application features in an isolated environment without affecting production. By maintaining a

cloned copy, developers and QA teams can work against realistic data without introducing risk.

Cloning also simplifies cross-region redundancy setups. A replica in another region can be
promoted quickly if the primary region experiences an outage. For compliance or analytics
purposes, cloned databases allow for read-only access to production datasets, enabling safe
reporting or data processing without interrupting live traffic.

Additionally, rather than building a new environment from scratch, you can clone the database into
another provider, validate it, and cut over with minimal disruption. This helps maintain operational
continuity and reduces the effort needed for complex migrations.

Database Migration Services for
Redis

Elestio provides a streamlined and reliable approach for migrating Redis instances from various
environments such as on-premises servers, self-managed cloud deployments, or other managed
services into its fully managed Redis platform. This migration process is designed to ensure data
consistency, minimize downtime, and simplify the operational complexity of managing Redis
infrastructure.

Key Steps in Migrating to Elestio

Pre-Migration Preparation

Before initiating your Redis migration, proper preparation is essential to ensure a seamless and
error-free transition:

e Create an Elestio Account: Sign up on the Elestio platform to access its suite of
managed services. This account will serve as the central hub for provisioning and
managing your Redis instance.

e Deploy the Target Redis Service: Create a new Redis service on Elestio to act as the
migration destination. Make sure the version matches your current Redis setup to avoid
compatibility issues. Review Elestio’s Redis documentation for details on supported
features, such as persistence modes (AOF, RDB), module support, and cluster
configurations.

Initiating the Migration Process

With the target environment ready, proceed with the Redis migration using the Elestio migration
interface:

1. Access the Migration Tool: Navigate to your Redis service overview on the Elestio
dashboard. Select the “Migrate Database” option to initiate the guided migration
workflow.

2. Configure Migration Settings: A prompt will appear to confirm that the target Redis
instance has sufficient memory and disk capacity to receive the source data. Once
verified, click “Get started” to begin.

3. Validate Source Redis Connection: Enter the connection details for your existing Redis
instance, including:

e Hostname - IP address or domain of the source Redis server
e Port - Default Redis port is 6379, but on Elestio it is configured as 26379
e Password - If your Redis instance is secured with authentication

e Database Number - (Optional) If using a specific logical database within Redis

Click “Run Check” to validate the source connection. This ensures Elestio can securely access and
read from your Redis instance. These details are typically available in your current Redis
deployment configuration or environment variables.

Database Admin Display your database credentials Hide DB Credentials
Host redis-aiont-u7774.vm.elestio.app
Port 26379
User default
Password s show password

redis-cli -h redis-aiont-u7774.vm.elestio.app -p 26379 --user default - e
CLI —pass ¥ ok o ok ok ook sk ook oSNOW password

4. Execute the Migration: If all checks pass successfully, start the migration by selecting “Start
migration.” Elestio will begin transferring the in-memory dataset and persistent data (if
applicable) into the new environment. Real-time logs and progress indicators will help you monitor
the operation, making it easy to identify and resolve any issues promptly.

Post-Migration Validation and Optimization

Once the Redis migration is complete, it's critical to validate the deployment and ensure the new
instance performs optimally:

e Verify Data Consistency: Use redis-cli or Elestio’s integrated tools to confirm that all
keys, data types, and values were correctly transferred. Compare key counts and sample
data between source and target. If using persistence (RDB or AOF), check the loading
behavior on restart to ensure durability.

e Test Application Connectivity: Update application configurations or connection strings
to point to the new Redis instance. Verify that all interactions such as caching, pub/sub, or
session storage are functioning as expected.

e Optimize Performance: Take advantage of Elestio’s performance features. Monitor
memory usage, eviction policies, and throughput in real-time using the platform’s
dashboard. Adjust Redis configurations for your workload type and enable auto-scaling if
supported.

o Implement Security Best Practices: Secure your new Redis instance by configuring
firewall rules, enabling TLS (if applicable), and rotating authentication credentials. Elestio
supports access management features that help restrict unauthorized connections and
secure data in transit.

https://docs.elest.io/uploads/images/gallery/2025-05/IT7image.png

e Clean Up and Document: After successful validation, decommission the old Redis
environment if no longer needed. Update your internal documentation to reflect the new
Redis endpoint, authentication details, and any configuration changes made during
migration.

Benefits of Using Elestio for Redis

Migrating Redis to Elestio delivers several operational and strategic benefits:

o Simplified Management: Elestio automates the operational overhead of managing
Redis, including monitoring, backups, and software updates. The centralized dashboard
provides real-time visibility into performance, key metrics, and system health. Users can
modify environment variables, upgrade service tiers, and manage Redis modules without
deep DevOps intervention.

e Security: Elestio keeps Redis instances up to date with the latest security patches. It
offers built-in mechanisms for securely managing credentials and limits unauthorized
access through firewall rules and network isolation. Backup automation ensures data is
safe and recoverable.

e Performance: Redis instances on Elestio are tuned for low-latency performance and can
handle real-time, high-throughput workloads. The infrastructure supports both standalone
and clustered Redis deployments, allowing for optimal performance under load.

e Scalability: Elestio’s Redis services are built to scale with your application. Users can
increase memory capacity, CPU allocation, or attach additional storage as demand grows.
The platform supports seamless plan upgrades without significant downtime, enabling
consistent growth and workload flexibility.

Manual Redis Migration Using
redis-cli and RDB Files

Manual migrations using Redis’s built-in tools, such as redis-cli and RDB (Redis Database) files, are
ideal for users who require full control over data export and import particularly during transitions
between providers, Redis version upgrades, or importing existing self-managed Redis datasets into
Elestio’s managed environment. This guide walks through the process of performing a manual
migration to and from Elestio Redis services using command-line tools, ensuring data portability,
consistency, and transparency at every step.

When to Use Manual Migration

Manual migration using native Redis tools is well-suited for scenarios that demand complete
control over the migration process. It is especially useful when transferring data from a self-hosted
Redis instance, an on-premises server, or another cloud provider into Elestio’s managed Redis
service. This method supports one-time imports without requiring persistent connections between
source and destination systems.

It also provides a reliable approach for performing version upgrades. Because RDB files contain a
snapshot of the dataset in a portable format, they can be restored into newer Redis versions with
minimal compatibility issues. When Elestio’s built-in tools are not applicable such as in migrations
from isolated environments or selective key transfers manual migration becomes the preferred
option. It also enables offline backup archiving, providing users with transportable and restorable
datasets independent of platform-specific formats.

Performing the Migration

Prepare the Environments

Before starting the migration, ensure that Redis is properly installed on both the source system and
your Elestio service. The source Redis server must allow access (if remote) and have a user with
sufficient privileges to export the dataset, including read access to all relevant keys and data
types.

On the Elestio side, provision a Redis service through the dashboard. Once it's active, retrieve the
connection credentials from the Database Info section. This includes host, port, and password.
Verify that your public IP is allowed under Cluster Overview > Security > Limit access per IP,
or the Redis port will not be reachable.

Create a Backup Using RDB

Use Redis’s RDB snapshotting method to create a backup of the dataset. This process serializes the
current state of your Redis database into a binary .rdb file.

To trigger a manual snapshot, run:

redis-cli -h <source host> -p <source port> SAVE

Once the command completes, locate the resulting dump.rdb file on the source system. This is
typically stored in /var/lib/redis/ or a path defined in your Redis configuration.

Alternatively, you can generate an RDB file using:

redis-cli --rdb backup.rdb

This creates a portable snapshot of the entire dataset without modifying the source instance’s
configuration.

Transfer the Dump File to the Target

If your local system differs from the one with access to Elestio’s Redis service, transfer the dump
file using a secure file transfer tool such as SCP:

scp backup.rdb user@host:/path/to/restore-system/

Ensure the file is available on the system you will use to perform the restore. You do not need to
upload the RDB file directly to the Elestio service restores are performed remotely using Redis
commands.

Restore the Dataset to Elestio

To restore data into Elestio, start a temporary local Redis instance using the dump file:

redis-server --dbfilename dump.rdb --dir /path/to/rdb/

This allows you to access the original dataset locally. Then, connect to both the local and Elestio
Redis instances and copy keys using redis-cli. For example:

redis-cli -h <source host> --scan | while read key; do
redis-cli -h <source host> DUMP "$key" | \
redis-cli -h <elestio host> -p <elestio port> -a <elestio password> RESTORE "$key" 0 -

done

This approach reads each key from the source instance and restores it to the Elestio-managed
Redis instance. Ensure that both instances are reachable and that no firewall or access rules block
communication.

For large datasets or environments with complex key structures, consider using community tools
like redis-copy or redis-migrate-tool to streamline key transfers.

Validate the Migration

After completing the import, verify that the migration was successful by connecting to the Elestio
Redis instance and inspecting the dataset.

Start by checking the total key count:

redis-cli -h <elestio host> -p <elestio port> -a <elestio password> DBSIZE

Review specific keys to confirm data consistency:

redis-cli -h <elestio host> -p <elestio port> -a <elestio password> KEYS *

Also verify the integrity of sets, hashes, lists, and sorted sets if used in your application. Ensure
that your application connects to the new Redis instance without issues and performs expected
operations.

If you've updated environment variables or configuration files, confirm that your changes are
reflected in the application deployment.

Benefits of Manual Migration

Manual Redis migration using redis-cli and RDB files offers several important advantages:

o Portability and Compatibility: RDB files are standard Redis snapshot formats that can
be restored into any Redis-compatible instance, whether hosted locally, in containers, or
in the cloud.

e Version Flexibility: Migrate across Redis versions using forward-compatible RDB
snapshots, without relying on binary compatibility or replication.

o Offline Storage: Backup files can be stored offline, versioned, and archived as part of
disaster recovery or compliance processes.

e Platform Independence: Elestio does not enforce proprietary formats. Native Redis
tools give you complete control over export, transfer, and restoration operations.

