
Creating a Database
Upgrading to Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

How-To Guides

Redis is a popular in-memory key-value data store known for its speed, flexibility, and support for a
wide range of data structures. Setting up Redis properly is essential to ensure high availability,
data persistence, and performance in modern applications. This guide walks through different ways
to run and connect to Redis: using the Redis CLI, using Docker containers, and using Redis CLI
tools. It also emphasizes best practices that should be followed at each step.

The Redis command-line interface (redis-cli) is a built-in tool that allows direct interaction with a
Redis server. It supports connecting to local or remote Redis instances and executing all supported
Redis commands interactively or non-interactively.

If you’re running Redis locally (e.g., from a system package or Docker container on your machine),
you can simply run the CLI tool with no arguments:

For remote connections, you need to provide the hostname or IP address, the port number (default
is 6379), and the password if the instance is protected:

You’ll be dropped into the Redis shell, where commands can be executed directly.

Docker is a widely-used tool for running applications in isolated environments called containers.
Redis can be deployed in a container for fast and consistent setup across different environments,
making it ideal for both development and production.

If you’re using Elestio for your Redis deployment, log into the Elestio dashboard. Go to your Redis
service, then navigate to Tools > Terminal. This opens a browser-based terminal already
configured for the correct environment.

Creating a Database

Creating Using redis-cli

Connect to Redis:

redis-cli

redis-cli -h <host> -p <port> -a <password>

Running Redis Using Docker

Access Elestio Terminal

Once in the terminal, change the directory to the project root where the Docker services are
defined. This is typically:

Elestio services are managed using Docker Compose, which orchestrates multiple containers. To
enter the Redis container’s shell and run Redis commands, use the following:

This command opens a shell inside the running Redis container.

Inside the Redis container, the redis-cli command is already available. Use it to access the Redis
instance. If authentication is enabled, supply the password using the -a flag:

cd /opt/app/

Access the Redis Container Shell

docker-compose exec redis bash

Access Redis CLI from Within the Container

https://docs.elest.io/uploads/images/gallery/2025-05/s4himage.png

You will be connected directly to the Redis server running inside the container.

Use a simple SET command to store a value and then retrieve it using GET to ensure Redis is
functioning properly:

Expected output:

This verifies read/write operations are working as expected.

redis-cli isn’t just for interactive use — it can also be used within shell scripts and automated
pipelines. This is useful for deployment tasks, monitoring scripts, and health checks.

For example, to set a key from a script or cron job:

This command connects to the Redis server and sets the specified key in a single line, suitable for
automation.

Organizing your Redis data is essential for maintainability and clarity. Use descriptive keys and
adopt a namespace-style format using colons (:) to group related keys:

This makes it easier to debug, analyze, and migrate data in the future.

redis-cli -a <password>

Test Connectivity

set testkey "Hello Redis"

get testkey

"Hello Redis"

Connecting Using redis-cli in Scripts

redis-cli -h <host> -p <port> -a <password> SET example_key "example_value"

Best Practices for Setting Up Redis
Use Meaningful Key Naming Conventions

user:1001:profile

order:2023:total

Follow Consistent Data Structures

Redis supports multiple data types: strings, hashes, lists, sets, and sorted sets. Choose the most
appropriate structure for your use case, and apply it consistently. For example, use hashes to store
user attributes and lists for ordered items.

Inconsistent or incorrect use of data structures can lead to performance issues and logic errors.

Security is critical in production environments. Always set a strong password using the requirepass
directive in redis.conf, and consider enabling TLS for encrypted communication if Redis is exposed
over a network.

Example redis.conf settings:

This helps prevent unauthorized access and secures data in transit.

Redis is in-memory, but it supports two main persistence options:

RDB (snapshotting): takes periodic snapshots of the data.
AOF (Append Only File): logs each write operation for more durable persistence.

Set these options in redis.conf:

Use AOF for durability and RDB for faster restarts — or combine both for a balance.

Use Redis’s built-in tools (INFO, MONITOR, SLOWLOG) to analyze behavior, identify slow queries,
and monitor memory usage. This helps maintain performance and plan for scaling.

External tools like RedisInsight, Prometheus, or Grafana can visualize metrics and alert on
anomalies.

Enable Authentication and TLS

requirepass strong_secure_password

tls-port 6379

tls-cert-file /path/to/cert.pem

tls-key-file /path/to/key.pem

Configure Persistence Options

save 900 1

appendonly yes

appendfsync everysec

Monitor and Tune Performance

Common Issues and Their Solutions

Issue Cause Solution

NOAUTH Authentication required. Connecting to a password-
protected Redis without a
password

Use the -a <password> flag or the
AUTH command before other
commands

ERR Client sent AUTH, but no
password is set

The Redis server does not require
a password

Remove the -a flag or check
requirepass in redis.conf

Can’t connect to Redis on
‘localhost’

Redis is not running or using the
wrong port

Start Redis and check redis.conf
or Docker port mappings

Docker Redis container refuses
connections

Container is not ready or
misconfigured network

Check logs using docker-compose
logs redis and verify port exposure

Data not persisted after restart Persistence settings are disabled Enable AOF or RDB in redis.conf

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-27-22-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-31-08-pm.jpg

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background.

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-32-12-pm.jpg

Redis supports modules to extend core functionality with new data types, commands, or
algorithms. These modules behave like plugins in other systems and are loaded at server startup.
Examples include RedisBloom, RedisTimeSeries, RedisJSON, and RedisSearch.

In Elestio-hosted Redis instances or any Docker Compose-based setup, modules can be loaded by
specifying them in the service configuration. This guide walks through how to install, load, and
manage Redis modules using Docker Compose, along with common issues and best practices.

Redis modules are typically compiled as shared object (.so) files and must be loaded at server
startup using the --loadmodule option. These module files are mounted into the container and
referenced from within the container’s file system. To use a module like RedisBloom in a Docker
Compose setup:

Mount the module file into the container and load it:

Here:

./modules/redisbloom.so is the local path on your host machine.
/data/redisbloom.so is the path inside the container.

Installing and Updating an
Extension

Installing and Enabling Redis
Modules

Update docker-compose.yml

services:

 redis:

 image: redis/redis-stack-server:latest

 volumes:

 - ./modules/redisbloom.so:/data/redisbloom.so

 command: ["redis-server", "--loadmodule", "/data/redisbloom.so"]

 ports:

 - "6379:6379"

https://oss.redis.com/redisbloom/
https://oss.redis.com/redistimeseries/
https://oss.redis.com/redisjson/
https://oss.redis.com/redisearch/

Make sure the .so file exists in the specified directory before running Docker Compose.

After updating the Compose file, restart the service:

This will reload Redis with the specified module.

Once Redis is running, connect to it using redis-cli:

Run the following command:

Expected output:

This confirms the module (in this case, bf for RedisBloom) is loaded and active.

Redis modules must match the Redis server version and platform. You can verify compatibility
through the module’s documentation or by testing it in a local development setup before using it in
production.

To inspect module-related details:

To verify the correct Redis image is being used:

Restart the Redis Service

docker-compose down

docker-compose up -d

Verify the Module is Loaded

docker-compose exec redis redis-cli -a <yourPassword>

MODULE LIST

1) 1) "name"

 2) "bf"

 3) "ver"

 4) (integer) 20207

Checking Module Availability &
Compatibility

INFO MODULES

If a module fails to load, check the container logs:

This often reveals missing paths or compatibility issues.

Unlike MySQL, Redis does not support dynamic unloading of modules once loaded. To update or
remove a module:

1. Stop the container:

2. Edit docker-compose.yml:

Change the .so file path if updating the module.
Remove the --loadmodule line if unloading the module.

3. Restart the container:

Always test updated modules in staging before applying to production.

Issue Cause Resolution

Redis fails to start Incorrect module path or
incompatible binary

Check docker-compose logs redis and verify the .so
path and architecture

MODULE command not
recognized

Using a Redis image without
module support

Use an image like redis/redis-stack-server which
supports modules

docker-compose exec redis redis-server --version

docker-compose logs redis

Updating or Unloading Modules

docker-compose down

docker-compose up -d

Troubleshooting Common Module
Issues

Issue Cause Resolution

“Can’t open .so file” Volume not mounted or
permission denied

Ensure the .so file exists locally and is readable by
Docker

Module not appearing in
MODULE LIST

Module failed to load silently Double-check command and container logs

Commands from the module
not recognized

Module not loaded properly or
incompatible

Validate Redis version and module compatibility

Redis modules execute native code with the same privileges as Redis itself. Only load trusted,
vetted modules from official sources. Avoid uploading or executing arbitrary .so files from unknown
authors. In multi-tenant or exposed environments, module misuse could lead to instability or
security risks. Ensure the redis user inside the container has limited privileges, and module
directories have appropriate permissions.

Security Considerations

Regular backups are essential when running a Redis deployment especially if you’re using it for
persistent data. While Elestio handles automated backups by default, you may want to create
manual backups before configuration changes, retain a local archive, or test backup automation.
This guide walks through multiple methods for creating Redis backups on Elestio, including
dashboard snapshots, command-line approaches, and Docker Compose-based setups. It also
explains backup storage, retention, and automation using scheduled jobs.

If you’re using Elestio’s managed Redis service, the simplest way to perform a full backup is
directly through the Elestio dashboard. This creates a snapshot of your current Redis dataset and
stores it in Elestio’s infrastructure. These snapshots can be restored later from the same interface,
which is helpful when making critical changes or testing recovery workflows.

To trigger a manual Redis backup on Elestio:

1. Log in to the Elestio dashboard.
2. Navigate to your Redis service or cluster.
3. Click the Backups tab in the service menu.
4. Choose Back up now to generate a manual snapshot.

This method is recommended for quick, reliable backups without needing to use the command line.

Creating Manual Backups

Manual Service Backups on Elestio

https://elest.io
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-27-22-pm.jpg

If your Redis instance is deployed via Docker Compose (as is common on Elestio-hosted
environments), you can manually back up Redis by copying its internal snapshot files. Redis
persistence is managed through RDB (Redis Database) and optionally AOF (Append-Only File)
logs, both of which reside in the container’s filesystem.

Go to your deployed Redis service in the Elestio dashboard, navigate to Tools > Terminal, and log
in using the credentials provided.

Navigate to your app directory:

This is the working directory of your Docker Compose project, which contains the docker-
compose.yml file.

Redis typically saves snapshots automatically based on configuration, but you can force one
manually:

This command triggers an immediate snapshot. The resulting file is usually called dump.rdb.

Use docker cp to copy the snapshot file (and optionally the AOF file, if enabled) from the container
to your host system:

If AOF persistence is also enabled (via appendonly yes in redis.conf), back up the AOF log as well:

This gives you complete Redis data snapshots for storage or future recovery.

Manual Backups Using Docker
Compose

Access Elestio Terminal

Locate the Redis Container Directory

cd /opt/app/

Trigger an RDB Snapshot (Optional)

docker-compose exec redis redis-cli SAVE

Copy Backup Files from the Container

docker cp $(docker-compose ps -q redis):/data/dump.rdb ./backup_$(date +%F).rdb

docker cp $(docker-compose ps -q redis):/data/appendonly.aof ./appendonly_$(date +%F).aof

After creating backups, it’s important to store them securely and manage retention properly. Redis
backups are binary files and can be quite compact (RDB) or larger and more frequent (AOF),
depending on configuration.

Use clear naming: redis_backup_2025_05_19.rdb
Store off-site or on cloud storage (e.g. AWS S3, Backblaze, encrypted storage).
Retain: 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Automate old file cleanup with cron jobs or retention scripts.
Optionally compress backups with gzip or xz to reduce space.

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

1. Edit the crontab:

2. Add a job like:

Make sure /backups/ exists and is writable by the cron user.

You can also compress the file or upload to cloud storage in the same script:

Backup Storage & Retention Best
Practices

Guidelines to Follow:

Automating Redis Backups (cron)

Example: Daily Backup at 3 AM

crontab -e

0 3 * * * docker-compose -f /opt/app/docker-compose.yml exec redis redis-cli SAVE && \

docker cp $(docker-compose -f /opt/app/docker-compose.yml ps -q redis):/data/dump.rdb

/backups/redis_backup_$(date +\%F).rdb

gzip /backups/redis_backup_$(date +\%F).rdb

rclone copy /backups/remote-dir/ remote:redis-backups

Format Description Restore Method

dump.rdb Binary snapshot of full dataset Stop Redis, replace dump.rdb, then
restart Redis

appendonly.aof Append-only command log Stop Redis, replace AOF file, then
restart Redis

To restore from a backup:

1. Stop Redis (docker-compose down)
2. Replace the corresponding file in the volumes or /data directory.
3. Restart Redis (docker-compose up -d)

Backup Format and Restore Notes

Restoring Redis backups is essential for disaster recovery, staging environment duplication, or
rolling back to a known state. Elestio supports backup restoration both through its web dashboard
and manually through Docker Compose and command-line methods. This guide explains how to
restore Redis backups from RDB or AOF files, covering both full and partial restore scenarios, and
includes solutions for common restoration issues.

This method applies when you have an RDB (dump.rdb) or AOF (appendonly.aof) file from a
previous backup. To restore the backup, you replace the existing Redis data file(s) inside the data
directory used by the container. Redis loads this data at startup, making it essential to stop the
server before replacing the files.

Shut down the Redis container cleanly to avoid file corruption:

Move your backup file into the appropriate location inside the Redis volume. Assuming you have a
backup named backup_2025_05_19.rdb:

Make sure this file path corresponds to the volume used in your docker-compose.yml. For example:

If you’re restoring an AOF file, replace appendonly.aof instead:

Restoring a Backup

Restoring from a Backup via
Terminal

Stop the Redis Container

docker-compose down

Replace the Backup File

cp ./backup_2025_05_19.rdb /opt/app/data/dump.rdb

volumes:

 - ./data:/data

cp ./appendonly_2025_05_19.aof /opt/app/data/appendonly.aof

Restart Redis

Start Redis again so it loads the restored data file:

Redis will automatically load dump.rdb or appendonly.aof depending on your configuration (set in
redis.conf with appendonly yes/no).

If you prefer working inside the container, you can also copy the file directly into the Redis
container using Docker commands.

If restoring an AOF file:

Redis will detect the updated data file and load it during startup.

Redis does not natively support partial restores like MySQL. However, you can achieve similar
outcomes with the following strategies:

If you exported individual key-value pairs using the redis-cli --rdb or similar logic, you can use a
script to reinsert only those keys.

Example using redis-cli and a JSON/CSV conversion:

docker-compose up -d

Restoring via Docker Compose
Terminal

Copy the Backup File into the Container

docker cp ./backup_2025_05_19.rdb $(docker-compose ps -q redis):/data/dump.rdb

docker cp ./appendonly_2025_05_19.aof $(docker-compose ps -q redis):/data/appendonly.aof

Restart Redis Inside Docker Compose

docker-compose restart redis

Partial Restores in Redis

Restore Selected Keys via Redis CLI

This approach assumes you have extracted individual key-value pairs into a format suitable for
scripting.

If your append-only file includes only a subset of commands, Redis will replay those on startup. You
can prepare a stripped-down AOF file for specific keys or operations, then follow the full AOF
restore method described above.

Restoring Redis data can fail for a few specific reasons, especially related to permissions, missing
config values, or service conflicts. Here are some frequent issues and how to solve them.

Cause: You’re attempting to issue commands or restore data into a Redis instance that requires
authentication.

Resolution: Always provide the password with your commands:

For automated scripts, use:

Cause: Corrupted or incompatible dump.rdb or appendonly.aof file.

Resolution: Ensure the backup file matches the Redis version you’re using. Try restoring with a
version of Redis that matches the backup environment.

cat keys_to_restore.txt | while read key; do

 value=$(cat dump.json | jq -r ".\"$key\"")

 redis-cli SET "$key" "$value"

done

Restore from A Partial AOF

Common Errors & How to Fix Them

1. NOAUTH Authentication Required

(error) NOAUTH Authentication required.

redis-cli -a yourpassword

redis-cli -a "$REDIS_PASSWORD" < restore_script.txt

2. Redis Fails to Start After Restore

Fatal error loading the DB: Invalid RDB format

Cause: Redis is configured to use AOF, but only an RDB file was restored or vice versa.

Resolution: Confirm your redis.conf or container command: entry defines which persistence
method is enabled:

Make sure the correct file (either dump.rdb or appendonly.aof) is in /data.

Resolution: Ensure your terminal session or script has write access to the target directory. Use
sudo if needed:

3. Data Not Restored

appendonly yes # For AOF

appendonly no # For RDB

4. Permission Denied When Copying Files

cp: cannot create regular file ‘/opt/app/data/dump.rdb’: Permission denied

sudo cp ./backup.rdb /opt/app/data/dump.rdb

Slow commands can impact Redis performance, especially under high load or when poorly
optimized operations are used. Whether you’re using Redis on Elestio through the dashboard,
accessing it inside a Docker Compose container, or connecting via CLI tools, Redis provides native
tooling to monitor and troubleshoot performance issues. This guide explains how to capture slow
operations using the Redis slow log, analyze command latency, and optimize performance through
configuration and query changes.

Redis includes a built-in slowlog feature that tracks commands exceeding a configured execution
time threshold. This is useful for identifying operations that may block the server or cause
application latency.

Use the Redis CLI to connect to your instance:

Check the threshold that defines a “slow” command (in microseconds):

The default is 10000 (10 milliseconds). Any command exceeding this will be logged.

To inspect recent slow commands:

Identifying Slow Queries

Inspecting Slow Commands from the
Terminal

Connect to your Redis instance via terminal

redis-cli -h <host> -p <port> -a <password>

Replace <host>, <port>, and <password> with your Redis credentials from the
Elestio dashboard.“

View the slowlog threshold

CONFIG GET slowlog-log-slower-than

View the slow query log

SLOWLOG GET 10

This shows the 10 most recent slow commands. Each entry includes the execution time,
timestamp, and command details.

If your Redis instance is deployed with Docker Compose, slow command inspection can be done
inside the running container environment.

Open a shell inside the container:

Then connect to Redis using:

Make sure the REDIS_PASSWORD environment variable is defined in your Docker Compose file.

You can view or change the slowlog threshold dynamically:

Set a lower threshold (e.g., 5000) temporarily to capture more entries during testing.

The number of slowlog entries stored is configurable:

To increase the history size:

This allows storing more slow command logs for better visibility.

Redis also includes latency monitoring tools that track spikes and identify root causes.

Analyzing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Check and adjust the slowlog threshold

CONFIG SET slowlog-log-slower-than 10000

Check how many entries are stored

CONFIG GET slowlog-max-len

CONFIG SET slowlog-max-len 256

Using the Latency Monitoring Feature

Latency tracking is often enabled by default. You can manually inspect events with:

This command gives a report of latency spikes and their possible causes (e.g., slow commands,
forks, or blocked I/O).

To inspect latency for a specific category:

Common tracked events include command, fork, aof-write, etc.

Redis performance can degrade due to specific patterns of usage, large keys, blocking commands,
or non-optimized pipelines.

Large key operations: Commands like LRANGE, SMEMBERS, HGETALL on large datasets.
Blocking operations: Commands like BLPOP, BRPOP, or Lua scripts with long loops.
Forking overhead: Caused by background saves or AOF rewrites.

Use SCAN instead of KEYS for iteration.
Limit result sizes from large structures (e.g., use LRANGE 0 99 instead of full LRANGE).
Use pipelining to batch requests and reduce round trips.
Avoid multi-key operations when possible in a clustered setup.

Performance tuning can also involve modifying Redis settings related to memory, persistence, and
networking.

Update these settings via redis.conf or dynamically with CONFIG SET:

Enable latency monitoring

LATENCY DOCTOR

View latency history for specific events

LATENCY HISTORY command

Understanding and Resolving Common
Bottlenecks

Common causes of slow commands:

Best practices to avoid slow commands:

Optimizing with Configuration Changes

Use caution with persistence settings. Disabling RDB or AOF improves performance but removes
durability.

CONFIG SET maxmemory-policy allkeys-lru

CONFIG SET save ""

Long-running commands in Redis can block the single-threaded event loop, causing delayed
responses or complete unresponsiveness in production environments like Elestio. Monitoring and
handling these commands is critical for maintaining performance and reliability. This guide explains
how to detect, analyze, and terminate blocking or slow commands in Redis using terminal tools,
Docker Compose setups, and Redis’s built-in logging features. It also includes prevention strategies
to avoid performance bottlenecks in the future.

Redis does not support multitasking like traditional SQL databases, so any command that takes too
long blocks the entire server. To inspect active commands and see which clients may be running
long operations, use the Redis CLI.

This command shows all connected clients, including their IP address, command in progress (cmd),
idle time, and total duration. Focus on clients with high idle or age values while still actively
running commands.

To observe commands in real time:

This outputs every operation in real time. It’s useful for spotting blocking commands but should be
used only in staging or during short troubleshooting sessions, as it consumes significant CPU.

Redis provides tools to close problematic connections or interrupt Lua scripts that run for too long.

Detect and terminate long-
running queries

Monitoring Long-Running Commands

Check active clients and their current commands

redis-cli -h <host> -p <port> -a <password> CLIENT LIST

Detect current command load using MONITOR

redis-cli -a <password> MONITOR

Terminating Problematic Commands Safely

Kill a specific client connection

If a client is running a blocking or long operation, you can terminate its connection using its client
ID:

This will drop the connection and stop any running command associated with that client.

If a Lua script is stuck or taking too long:

This stops the currently executing script. If the script has modified data, Redis will return an error
to avoid leaving the database in an inconsistent state.

If your Redis service is running inside a Docker Compose setup on Elestio, you’ll need to access the
container before you can inspect or kill commands.

Inside the container, connect to Redis using:

Then, use CLIENT LIST, SCRIPT KILL, or CLIENT KILL just like from the host.

Redis includes a built-in slowlog that logs commands that exceed a specific execution threshold.

CLIENT KILL ID <id>

You can find the <id> from the CLIENT LIST command.“

Stop a long-running Lua script

SCRIPT KILL

If the script is not killable (e.g., during a write operation), Redis will return an
error. Always use SCRIPT KILL cautiously.“

Managing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Using the Redis Slowlog Feature

Enable and configure slowlog in redis.conf

Update these settings in redis.conf, or set them at runtime:

This shows the 10 most recent slow commands with their timestamp, execution time, and
command details.

Use this to reset the log after reviewing or during maintenance.

Redis includes latency tracking features to help you understand when and why delays occur.

This gives you a summary of observed latency spikes and their causes (e.g., command execution,
AOF rewrite, background saves).

You can replace command with any tracked event like fork, aof-write, or expire-cycle.

Preventing long-running commands is critical since Redis handles all operations on a single thread.

slowlog-log-slower-than 10000 # Log commands slower than 10ms

slowlog-max-len 128 # Keep 128 slow entries

CONFIG SET slowlog-log-slower-than 10000

CONFIG SET slowlog-max-len 128

View the slowlog

SLOWLOG GET 10

Clear the slowlog

SLOWLOG RESET

Analyzing Command Latency Over Time

Generate a diagnostic latency report

LATENCY DOCTOR

View detailed latency history by event

LATENCY HISTORY command

Best Practices to Prevent Long-Running
Commands

Avoid full key scans: Never use KEYS * or SMEMBERS on large sets in production. Use
SCAN instead for incremental iteration.
Limit Lua script duration: Break complex scripts into smaller steps and test for
performance in staging.
Use pipelining: Send multiple commands in one round-trip to reduce overall time spent
per operation.
Limit list and set access: Use ranges or batch operations for large data structures.

Enable eviction policies: To avoid OOM errors that can freeze Redis, enable LRU or LFU
eviction:

Monitor regularly: Use CLIENT LIST, SLOWLOG, and LATENCY in combination to detect
problematic patterns early.

LRANGE mylist 0 99 # Good

LRANGE mylist 0 -1 # Risky on large lists

CONFIG SET maxmemory-policy allkeys-lru

Running out of disk space in a Redis environment can lead to failed writes, snapshot errors, and
service unavailability. Redis relies on disk storage for persistence (RDB and AOF files), temporary
dumps, and logs especially when persistence is enabled. On platforms like Elestio, while the
infrastructure is managed, users are responsible for monitoring disk usage, configuring retention
policies, and managing backups. This guide covers how to monitor disk consumption, configure
alerts, remove unused data, and follow best practices to prevent full disk scenarios in a Redis setup
using Docker Compose.

Disk usage monitoring is essential for spotting unusual growth before it leads to failures. In Docker
Compose setups, you’ll need both host-level and container-level visibility.

Run this on the host machine to check which mount point is filling up:

This shows available and used space for each volume. Identify the mount point used by your Redis
volume—usually mapped to something like /var/lib/docker/volumes/redis_data/_data.

Open a shell inside the Redis container:

Inside the container, check the data directory size:

This reveals total usage by persistence files (appendonly.aof, dump.rdb, temporary files). You can
inspect individual file sizes with:

Preventing Full Disk Issues

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec redis sh

du -sh /data

ls -lh /data

Configuring Alerts and Cleaning Up Storage

Monitoring alone isn’t enough—automated alerts and safe cleanup prevent downtime. You can
inspect disk usage across Docker resources on the host with:

To remove a specific unused volume:

If AOF persistence is enabled, the append-only file can grow large over time. You can manually
trigger a rewrite to compact the file:

This creates a smaller AOF file containing the same dataset.

If you are using RDB snapshots, they’re stored in /data within the container (mapped to a host
volume). To clean up, list them first:

Remove unnecessary .rdb files with:

Redis creates temporary files during fork operations for AOF rewrites and RDB saves. These are
stored in the container’s /tmp directory.

docker system df

Identify unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Warning: Never delete the volume mapped to your Redis data unless you’ve
backed up its contents and confirmed it is not in use.“

Trigger AOF file compaction

docker-compose exec redis redis-cli BGREWRITEAOF

Clean up old snapshots

docker-compose exec redis ls -lh /data

docker-compose exec redis rm /data/dump-<timestamp>.rdb

Managing & Optimizing Temporary Files

Monitor temporary file usage:

If /tmp fills up, writes and forks may fail. You can change the temporary directory by modifying the
dir directive in redis.conf to point to /data, which is volume-backed:

Restart the container to apply changes.

Long-term disk space health in Redis requires proactive design and ongoing management.

Avoid storing binary blobs: Store large files (images, PDFs, etc.) outside Redis and use
Redis only for keys/metadata. Use object storage for large content.
Disable persistence if not needed: For ephemeral cache use cases, you can disable
persistence entirely to reduce disk usage:

Limit AOF growth: Fine-tune AOF rewrite behavior in redis.conf:

Rotate logs in containers: If logging to file (e.g., /var/log/redis/redis-server.log),
configure logrotate on the host or use Docker log rotation options via docker-compose.yml
:

Evict old keys with TTLs: Set expiration on cache keys to prevent unbounded growth:

Monitor data size: Use INFO persistence and INFO memory to track memory usage and
AOF file size:

docker-compose exec redis du -sh /tmp

dir /data

Best Practices for Disk Space Management

appendonly no

save ""

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

SET session:<id> "data" EX 3600

Offload backups: Backups stored in /data should be moved off the container host. Use
Elestio backup tools or mount a remote backup volume in your docker-compose.yml.

docker-compose exec redis redis-cli INFO memory

docker-compose exec redis redis-cli INFO persistence

As your Redis data grows especially when using persistence modes like RDB or AOF it’s important
to track how storage is being used. Unchecked growth can lead to full disks, failed writes, longer
startup times, and backup complications. While Elestio handles the hosting, Redis storage tuning
and cleanup remain your responsibility. This guide explains how to inspect keyspace size, analyze
persistence files, detect unnecessary memory usage, and optimize Redis storage under a Docker
Compose setup.

Redis doesn’t have schemas or tables, but its memory and disk footprint can be analyzed using
built-in commands.

From your terminal, connect to the container:

This displays current memory stats. Look for the used_memory_human and maxmemory fields to
understand real usage versus limits.

Output looks like:

This tells you how many keys exist, how many have TTLs set, and their average lifespan. If most
keys never expire, your dataset may grow indefinitely.

Inside the Redis container, persistent files live under /data:

Checking Database Size and
Related Issues

Checking Keyspace Usage and Persistence
File Size

Check total memory used by Redis

docker-compose exec redis redis-cli INFO memory

Inspect key count and usage by database

docker-compose exec redis redis-cli INFO keyspace

db0:keys=1250,expires=1200,avg_ttl=34560000

View on-disk file sizes

Check the sizes of:

dump.rdb (if RDB is enabled)
appendonly.aof (if AOF is enabled)

These files represent your on-disk dataset and can become large if not managed

Redis may accumulate unnecessary memory usage due to expired keys not yet evicted, inefficient
data structures, or infrequent AOF rewrites.

Redis doesn’t provide per-key memory stats natively, but you can sample keys and estimate
memory usage:

This scans a portion of the keyspace and reports the largest keys by type. If a single key is taking
excessive space (e.g., a massive list or set), it may need to be split or purged.

Use the MEMORY USAGE command to analyze specific keys:

You can script this to scan high-traffic prefixes and locate heavy keys.

Redis may fragment memory, reducing efficiency:

A mem_fragmentation_ratio significantly above 1.2 suggests internal fragmentation.

Once you’ve identified memory-heavy keys or large persistence files, Redis offers several tools to
optimize space usage.

docker-compose exec redis sh -c "ls -lh /data"

Detecting Bloat and Unused Space

Estimate memory usage by key pattern

docker-compose exec redis redis-cli --bigkeys

Analyze memory per key (sample)

docker-compose exec redis redis-cli MEMORY USAGE some:key

Check fragmentation

docker-compose exec redis redis-cli INFO memory | grep fragmentation

Optimizing and Reclaiming Redis Storage

If AOF is enabled, it grows over time. To reduce its size:

This background process creates a smaller version of the AOF file without data loss.

Manually delete stale keys or add TTLs to ensure automatic cleanup:

Or set expiration:

Use patterns to delete multiple keys (carefully!):

To enforce automatic eviction when nearing memory limits, In redis.conf (mounted via Docker
volume):

Restart the container to apply changes. This keeps Redis performant under constrained storage.

Redis typically writes to /data in the container (mapped from a host volume). Check usage from the
host:

Trigger AOF rewrite (compacts the appendonly file)

docker-compose exec redis redis-cli BGREWRITEAOF

Delete or expire unused keys

docker-compose exec redis redis-cli DEL obsolete:key

docker-compose exec redis redis-cli EXPIRE session:1234 3600

docker-compose exec redis redis-cli --scan --pattern "temp:*" | xargs -n 100 redis-cli DEL

Avoid FLUSHALL or bulk deletes in production unless absolutely necessary.“
Tune maxmemory and eviction policy

maxmemory 512mb

maxmemory-policy allkeys-lru

Managing and Optimizing Redis Files on
Disk

Monitor data directory inside Docker

List all Docker volumes:

Check Redis volume size (replace <volume_name>):

RDB snapshots (e.g. dump.rdb) are stored in /data. Clean up old or unneeded ones manually:

Ensure backups are offloaded to external storage and not stored alongside the live database.

Use TTLs liberally: Set expiration on all temporary/session keys to prevent unbounded
growth.
Avoid storing large binary blobs: Store images, files, or videos outside Redis. Use
Redis for metadata only.
Rotate logs: If Redis logs to file (e.g., /var/log/redis.log), rotate them via Docker logging
options or tools like logrotate.
In docker-compose.yml

Use efficient data structures: Prefer HASH or SET over storing large JSON blobs as
strings.
Monitor AOF size and compaction frequency: If AOF is growing too fast, adjust these
in redis.conf:

docker system df

docker volume ls

sudo du -sh /var/lib/docker/volumes/<volume_name>/_data

Clean up RDB snapshots and old backups

docker-compose exec redis rm /data/dump-<timestamp>.rdb

Best Practices for Redis Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

Archive analytics data: For time-series or metrics data, periodically move old entries to
cold storage.
Back up to offsite storage: Avoid keeping snapshots on the same disk or volume. Use
Elestio’s backup integrations to store them in cloud or remote storage.

