
Overview
How to Connect

Connecting with Node.js
Connecting with Python
Connecting with PHP
Connecting with Go
Connecting with Java
Connecting with RedisInsight
Connecting with redis-cli

How-To Guides

Creating a Database
Upgrading to Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

Database Migration

Cloning a Service to Another Provider or Region
Database Migration Services for Redis
Manual Redis Migration Using redis-cli and RDB Files

Cluster Management

Overview

Redis

Deploying a New Cluster
Node Management
Adding a Node
Promoting a Node
Removing a Node
Backups and Restores
Cluster Resynchronization
Database Migrations
Delete a Cluster
Restricting Access by IP

Redis is an open-source, in-memory key-value data store widely used as a database, cache, and
message broker. Known for its high performance, Redis offers microsecond response times, making
it ideal for real-time applications and high-throughput environments. It supports a variety of
advanced data structures and provides features that enhance scalability, availability, and ease of
development. Redis runs on multiple operating systems, including Linux, macOS, and Windows (via
WSL or third-party builds).

Key Features of Redis:

Performance and Scalability: Redis is an in-memory data store known for its
exceptional speed and low latency, capable of handling millions of operations per second.
It supports horizontal scaling via Redis Cluster and sharding for distributed environments.
Persistence Options: Offers multiple persistence mechanisms, including point-in-time
snapshots (RDB) and append-only file (AOF) logging, allowing users to balance
performance and data durability based on application needs.
Data Structures: Provides a rich set of data types beyond simple key-value pairs,
including lists, sets, hashes, sorted sets, bitmaps, and hyperloglogs, enabling efficient and
versatile data modeling.
Pub/Sub Messaging: Supports publish/subscribe messaging patterns, making it suitable
for building real-time messaging and notification systems.
High Availability and Replication: Features master-replica replication and automatic
failover with Redis Sentinel, ensuring high availability, data redundancy, and minimal
downtime during failures.
Security Features: Includes authentication, access control lists (ACLs), and SSL/TLS
support to safeguard access and communication between clients and the Redis server.
Modules and Extensibility: Supports a modular architecture allowing the addition of
custom capabilities like RediSearch, RedisJSON, and RedisGraph, enhancing its
functionality for specific use cases.
Cross-Platform Support: Runs on major operating systems including Linux, macOS, and
Windows (via WSL or third-party builds), offering deployment flexibility across different
platforms.
Ease of Use and Tooling: Comes with a simple command-line interface, client libraries
for many programming languages, and monitoring tools like RedisInsight, facilitating easy
integration, debugging, and performance tuning.

These features make Redis a powerful and flexible solution for developers and organizations
seeking ultra-fast, scalable, and real-time data processing capabilities.

Overview

How to Connect

How to Connect

This guide explains how to establish a connection between a Node.js application and a Redis
database using the redis package. It walks through the necessary setup, configuration, and
execution of a simple Redis command.

To successfully connect to a Redis instance, you’ll need to provide the following parameters. These
can typically be found on the Elestio service overview page.

Variable Description Purpose

HOST Redis hostname (from Elestio service
overview)

The address of the server hosting your Redis instance.

PORT Redis port (from Elestio service
overview)

The port used for the Redis connection. The default Redis port
is 6379.

PASSWORD Redis password (from Elestio service
overview)

Authentication key used to connect securely to the Redis
instance.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Node.js

Variables

https://www.npmjs.com/package/redis

Install Node.js and NPM

Check if Node.js is installed by running:

If not installed, download and install it from nodejs.org.
Confirm npm is installed by running:

Install the redis Package

The redis package enables communication between Node.js applications and Redis.

Prerequisites

node -v

npm -v

npm install redis --save

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg
https://nodejs.org

Create a new file named redis.js and add the following code:

Code

const redis = require("redis");

// Redis connection configuration

const config = {

 socket: {

 host: "HOST",

 port: PORT,

 },

 password: "PASSWORD",

};

// Create a Redis client

const client = redis.createClient(config);

// Handle connection errors

client.on("error", (err) => {

 console.error("Redis connection error:", err);

});

// Connect and run a test command

(async () => {

 try {

 await client.connect();

 console.log("Connected to Redis");

 // Set and retrieve a test key

 await client.set("testKey", "Hello Redis");

 const value = await client.get("testKey");

 console.log("Retrieved value:", value);

 // Disconnect from Redis

 await client.disconnect();

 } catch (err) {

 console.error("Redis operation failed:", err);

 }

To execute the script, open the terminal or command prompt and navigate to the directory where
redis.js is located. Once in the correct directory, run the script with the command:

If the connection is successful, the output should resemble:

})();

node redis.js

Connected to Redis

Retrieved value: Hello Redis

How to Connect

This guide explains how to connect a Python application to a Redis database using the redis library.
It walks through the required setup, configuration, and execution of a simple Redis command.

To connect to Redis, the following parameters are needed. You can find these values in the Elestio
Redis service overview.

Variable Description Purpose

HOST Redis hostname (from Elestio service overview) Address of the Redis server.

PORT Redis port (from Elestio service overview) Port used to connect to Redis. The default is 6379.

PASSWORD Redis password (from Elestio service overview) Authentication credential for the Redis connection.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Python

Variables

https://pypi.org/project/redis/

Install Python and pip

Check if Python is installed by running:

If not installed, download and install it from python.org.
Check pip (Python package installer):

Install the redis Package

Install the official redis library using pip:

Prerequisites

python3 --version

pip --version

pip install redis

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg
https://www.python.org

Create a file named redis.py and paste the following code:

To execute the script, open the terminal or command prompt and navigate to the directory where
redis.py is located. Once in the correct directory, run the script with the command:

If everything is set up correctly, the output will be:

Code

import redis

config = {

 "host": "HOST",

 "port": PORT, # Example: 6379

 "password": "PASSWORD",

 "decode_responses": True

}

try:

 client = redis.Redis(**config)

 client.set("testKey", "Hello Redis")

 value = client.get("testKey")

 print("Connected to Redis")

 print("Retrieved value:", value)

except redis.RedisError as err:

 print("Redis connection or operation failed:", err)

python3 redis.py

Connected to Redis

Retrieved value: Hello Redis

How to Connect

This guide explains how to establish a connection between a PHP application and a Redis database
using the phpredis extension. It walks through the necessary setup, configuration, and execution of
a simple Redis command.

Certain parameters must be provided to establish a successful connection to a Redis database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

HOST Redis hostname, from the Elestio service
overview page

The address of the server hosting your Redis
instance.

PORT Port for Redis connection, from the Elestio service
overview page

The network port used to connect to Redis. The
default port is 6379.

PASSWORD Redis password, from the Elestio service overview
page

The authentication key required to connect securely
to Redis.

These values can usually be found in the Elestio service overview details as shown in the image
below. Make sure to take a copy of these details and add it to the code moving ahead.

Connecting with PHP

Variables

Install PHP
Check if PHP is installed by running:

If not installed, download it from php.net and install.
Install the phpredis Extension

The phpredis extension provides a native PHP interface for Redis. You can install it
using:

Then enable it in your php.ini:

To verify it’s installed:

Prerequisites

php -v

sudo pecl install redis

extension=redis

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg
https://www.php.net/downloads

Once all prerequisites are set up, create a new file named redis.php and add the following code:

Open the terminal or command prompt and navigate to the directory where redis.php is located.
Once in the correct directory, run the script with the command:

If the connection is successful, the terminal will display output similar to:

php -m | grep redis

Code

<?php

$host = 'HOST';

$port = PORT;

$password = 'PASSWORD';

$redis = new Redis();

try {

 $redis->connect($host, $port);

 if (!$redis->auth($password)) {

 throw new Exception('Authentication failed');

 }

 echo "Connected to Redis\n";

 $redis->set("testKey", "Hello Redis");

 $value = $redis->get("testKey");

 echo "Retrieved value: $value\n";

 $redis->close();

} catch (Exception $e) {

 echo "Redis connection or operation failed: " . $e->getMessage() . "\n";

}

php redis.php

Connected to Redis

Retrieved value: Hello Redis

How to Connect

This guide explains how to establish a connection between a Go application and a Redis database
using the go-redis package. It walks through the necessary setup, configuration, and execution of a
simple Redis command.

Certain parameters must be provided to establish a successful connection to a Redis database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

HOST Redis hostname, from the Elestio service
overview page

The address of the server hosting your Redis instance.

PORT Port for Redis connection, from the Elestio service
overview page

The network port used to connect to Redis. The default
port is 6379.

PASSWORD Redis password, from the Elestio service
overview page

The authentication key required to connect securely to
Redis.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Go

Variables

Install Go

Check if Go is installed by running:

If not installed, download it from golang.org and install.

Install the go-redis Package

The go-redis package enables Go applications to interact with Redis. Install it using:

Prerequisites

go version

go get github.com/redis/go-redis/v9

Code

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg

Once all prerequisites are set up, create a new file named redis.go and add the following code:

package main

import (

	"context"

	"fmt"

	"time"

	"github.com/redis/go-redis/v9"

)

func main() {

	opt := &redis.Options{

		Addr: "HOST:PORT",

		Password: "PASSWORD",

		DB: 0,

	}

	rdb := redis.NewClient(opt)

	ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

	defer cancel()

	err := rdb.Set(ctx, "testKey", "Hello Redis", 0).Err()

	if err != nil {

		fmt.Println("Redis operation failed:", err)

		return

	}

	val, err := rdb.Get(ctx, "testKey").Result()

	if err != nil {

		fmt.Println("Redis operation failed:", err)

		return

	}

	fmt.Println("Connected to Redis")

	fmt.Println("Retrieved value:", val)

	if err := rdb.Close(); err != nil {

		fmt.Println("Error closing connection:", err)

To execute the script, open the terminal or command prompt and navigate to the directory where
redis.go is located. Once in the correct directory, run the script with the command:

If the connection is successful, the terminal will display output similar to:

	}

}

go run redis.go

Connected to Redis

Retrieved value: Hello Redis

How to Connect

This guide explains how to establish a connection between a Java application and a Redis database
using the Jedis library. It walks through the necessary setup, configuration, and execution of a
simple Redis command.

Certain parameters must be provided to establish a successful connection to a Redis database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

HOST Redis hostname, from the Elestio service
overview page

The address of the server hosting your Redis
instance.

PORT Port for Redis connection, from the Elestio
service overview page

The network port used to connect to Redis. The
default port is 6379.

PASSWORD Redis password, from the Elestio service
overview page

The authentication key required to connect securely
to Redis.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the code moving ahead.

Connecting with Java

Variables

Install Java

Check if Java is installed by running:

If not installed, download it from oracle.com and install.

Download Jedis and Dependencies

The Jedis library enables Java applications to interact with Redis. You need to download two JAR
files manually:

1. Jedis JAR (Jedis 5.1.0):
https://repo1.maven.org/maven2/redis/clients/jedis/5.1.0/jedis-5.1.0.jar

2. Apache Commons Pool2 JAR (Required by Jedis):

Prerequisites

java -version

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg
https://repo1.maven.org/maven2/redis/clients/jedis/5.1.0/jedis-5.1.0.jar

https://repo1.maven.org/maven2/org/apache/commons/commons-pool2/2.11.1/commons-
pool2-2.11.1.jar

Place both JAR files in the same directory as your Java file.

Once all prerequisites are set up, create a new file named RedisTest.java and add the following
code:

To execute the script, open the terminal or command prompt and navigate to the directory where
RedisTest.java is located. Once in the correct directory, run the following commands:

On Linux/macOS :

Code

import redis.clients.jedis.JedisPooled;

public class RedisTest {

 public static void main(String[] args) {

 // Redis connection configuration

 String host = "HOST";

 int port = PORT; // e.g., 6379

 String password = "PASSWORD";

 // Create a Redis client

 JedisPooled jedis = new JedisPooled(host, port, password);

 try {

 // Set and get a test key

 jedis.set("testKey", "Hello Redis");

 String value = jedis.get("testKey");

 System.out.println("Connected to Redis");

 System.out.println("Retrieved value: " + value);

 } catch (Exception e) {

 System.out.println("Redis connection or operation failed: " + e.getMessage());

 }

 }

}

https://repo1.maven.org/maven2/org/apache/commons/commons-pool2/2.11.1/commons-pool2-2.11.1.jar
https://repo1.maven.org/maven2/org/apache/commons/commons-pool2/2.11.1/commons-pool2-2.11.1.jar

On Windows :

If the connection is successful, the terminal will display output similar to:

javac -cp "jedis-5.1.0.jar:commons-pool2-2.11.1.jar" RedisTest.java

java -cp ".:jedis-5.1.0.jar:commons-pool2-2.11.1.jar" RedisTest

javac -cp "jedis-5.1.0.jar;commons-pool2-2.11.1.jar" RedisTest.java

java -cp ".;jedis-5.1.0.jar;commons-pool2-2.11.1.jar" RedisTest

Connected to Redis

Retrieved value: Hello Redis

How to Connect

This guide explains how to establish a connection between RedisInsight and a Redis database
instance. It walks through the necessary setup, configuration, and connection steps using the
official Redis GUI.

Certain parameters must be provided to establish a successful connection to a Redis database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

HOST Redis hostname, from the Elestio service
overview page

The address of the server hosting your Redis
instance.

PORT Port for Redis connection, from the Elestio
service overview page

The network port used to connect to Redis. The
default port is 6379.

PASSWORD Redis password, from the Elestio service
overview page

The authentication key required to connect securely
to Redis.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and add it to the tool moving ahead.

Connecting with RedisInsight

Variables

Install RedisInsight

RedisInsight is a graphical tool for managing Redis databases. Download and install RedisInsight
from:

https://redis.com/redis-enterprise/redis-insight/

RedisInsight is available for Windows, macOS, and Linux.

Once all prerequisites are set up, follow these steps to connect:

1. Launch RedisInsight
Open the RedisInsight application after installation.

2. Add a New Redis Database

Prerequisites

Steps

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg
https://redis.com/redis-enterprise/redis-insight/

Click on “Add Redis Database”.
3. Enter Your Connection Details

Fill in the following fields using your Elestio Redis service information:
Host: HOST
Port: PORT
Password: PASSWORD

4. Test and Save the Connection
Click on “Test Connection” to verify the details. If successful, click “Connect” or “Add
Database”.

If the connection is successful, RedisInsight will display a dashboard showing key metrics, data
structures, memory usage, and allow you to interact directly with Redis using a built-in CLI or visual
browser.

https://docs.elest.io/uploads/images/gallery/2025-05/0Huimage.png

How to Connect

This guide explains how to establish a connection between redis-cli and a Redis database instance.
It walks through the necessary setup, configuration, and execution of a simple Redis command
from the terminal.

Certain parameters must be provided to establish a successful connection to a Redis database.
Below is a breakdown of each required variable, its purpose, and where to find it. Here’s what each
variable represents:

Variable Description Purpose

HOST Redis hostname, from the Elestio service
overview page

The address of the server hosting your Redis
instance.

PORT Port for Redis connection, from the Elestio
service overview page

The network port used to connect to Redis. The
default port is 6379.

PASSWORD Redis password, from the Elestio service
overview page

The authentication key required to connect securely
to Redis.

These values can usually be found in the Elestio service overview details as shown in the image
below, make sure to take a copy of these details and use them in the command moving ahead.

Connecting with redis-cli

Variables

Install redis-cli

Check if redis-cli is installed by running:

If not installed, you can install it via:

macOS:

Ubuntu/Debian:

Prerequisites

redis-cli --version

brew install redis

sudo apt install redis-tools

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-19-at-12-23-05-pm.jpg

Windows:
Use Windows Subsystem for Linux (WSL) or download a Redis CLI binary.

Once all prerequisites are set up, open the terminal or command prompt and run the following
command:

Replace HOST, PORT, and PASSWORD with the actual values from your Elestio Redis service. If the
connection is successful, the terminal will display a Redis prompt like this:

You can then run a simple command to test the connection:

Expected output:

If the connection is successful, the terminal will display output similar to:

Command

redis-cli -h HOST -p PORT -a PASSWORD

HOST:PORT>

set testKey "Hello Redis"

get testKey

"Hello Redis"

"Hello Redis"

How-To Guides

How-To Guides

Redis is a popular in-memory key-value data store known for its speed, flexibility, and support for a
wide range of data structures. Setting up Redis properly is essential to ensure high availability,
data persistence, and performance in modern applications. This guide walks through different ways
to run and connect to Redis: using the Redis CLI, using Docker containers, and using Redis CLI
tools. It also emphasizes best practices that should be followed at each step.

The Redis command-line interface (redis-cli) is a built-in tool that allows direct interaction with a
Redis server. It supports connecting to local or remote Redis instances and executing all supported
Redis commands interactively or non-interactively.

If you’re running Redis locally (e.g., from a system package or Docker container on your machine),
you can simply run the CLI tool with no arguments:

For remote connections, you need to provide the hostname or IP address, the port number (default
is 6379), and the password if the instance is protected:

You’ll be dropped into the Redis shell, where commands can be executed directly.

Docker is a widely-used tool for running applications in isolated environments called containers.
Redis can be deployed in a container for fast and consistent setup across different environments,
making it ideal for both development and production.

If you’re using Elestio for your Redis deployment, log into the Elestio dashboard. Go to your Redis
service, then navigate to Tools > Terminal. This opens a browser-based terminal already
configured for the correct environment.

Creating a Database

Creating Using redis-cli

Connect to Redis:

redis-cli

redis-cli -h <host> -p <port> -a <password>

Running Redis Using Docker

Access Elestio Terminal

Once in the terminal, change the directory to the project root where the Docker services are
defined. This is typically:

Elestio services are managed using Docker Compose, which orchestrates multiple containers. To
enter the Redis container’s shell and run Redis commands, use the following:

This command opens a shell inside the running Redis container.

Inside the Redis container, the redis-cli command is already available. Use it to access the Redis
instance. If authentication is enabled, supply the password using the -a flag:

cd /opt/app/

Access the Redis Container Shell

docker-compose exec redis bash

Access Redis CLI from Within the Container

https://docs.elest.io/uploads/images/gallery/2025-05/s4himage.png

You will be connected directly to the Redis server running inside the container.

Use a simple SET command to store a value and then retrieve it using GET to ensure Redis is
functioning properly:

Expected output:

This verifies read/write operations are working as expected.

redis-cli isn’t just for interactive use — it can also be used within shell scripts and automated
pipelines. This is useful for deployment tasks, monitoring scripts, and health checks.

For example, to set a key from a script or cron job:

This command connects to the Redis server and sets the specified key in a single line, suitable for
automation.

Organizing your Redis data is essential for maintainability and clarity. Use descriptive keys and
adopt a namespace-style format using colons (:) to group related keys:

This makes it easier to debug, analyze, and migrate data in the future.

redis-cli -a <password>

Test Connectivity

set testkey "Hello Redis"

get testkey

"Hello Redis"

Connecting Using redis-cli in Scripts

redis-cli -h <host> -p <port> -a <password> SET example_key "example_value"

Best Practices for Setting Up Redis
Use Meaningful Key Naming Conventions

user:1001:profile

order:2023:total

Follow Consistent Data Structures

Redis supports multiple data types: strings, hashes, lists, sets, and sorted sets. Choose the most
appropriate structure for your use case, and apply it consistently. For example, use hashes to store
user attributes and lists for ordered items.

Inconsistent or incorrect use of data structures can lead to performance issues and logic errors.

Security is critical in production environments. Always set a strong password using the requirepass
directive in redis.conf, and consider enabling TLS for encrypted communication if Redis is exposed
over a network.

Example redis.conf settings:

This helps prevent unauthorized access and secures data in transit.

Redis is in-memory, but it supports two main persistence options:

RDB (snapshotting): takes periodic snapshots of the data.
AOF (Append Only File): logs each write operation for more durable persistence.

Set these options in redis.conf:

Use AOF for durability and RDB for faster restarts — or combine both for a balance.

Use Redis’s built-in tools (INFO, MONITOR, SLOWLOG) to analyze behavior, identify slow queries,
and monitor memory usage. This helps maintain performance and plan for scaling.

External tools like RedisInsight, Prometheus, or Grafana can visualize metrics and alert on
anomalies.

Enable Authentication and TLS

requirepass strong_secure_password

tls-port 6379

tls-cert-file /path/to/cert.pem

tls-key-file /path/to/key.pem

Configure Persistence Options

save 900 1

appendonly yes

appendfsync everysec

Monitor and Tune Performance

Common Issues and Their Solutions

Issue Cause Solution

NOAUTH Authentication required. Connecting to a password-
protected Redis without a
password

Use the -a <password> flag or the
AUTH command before other
commands

ERR Client sent AUTH, but no
password is set

The Redis server does not require
a password

Remove the -a flag or check
requirepass in redis.conf

Can’t connect to Redis on
‘localhost’

Redis is not running or using the
wrong port

Start Redis and check redis.conf
or Docker port mappings

Docker Redis container refuses
connections

Container is not ready or
misconfigured network

Check logs using docker-compose
logs redis and verify port exposure

Data not persisted after restart Persistence settings are disabled Enable AOF or RDB in redis.conf

How-To Guides

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-27-22-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-31-08-pm.jpg

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background.

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-32-12-pm.jpg

How-To Guides

Redis supports modules to extend core functionality with new data types, commands, or
algorithms. These modules behave like plugins in other systems and are loaded at server startup.
Examples include RedisBloom, RedisTimeSeries, RedisJSON, and RedisSearch.

In Elestio-hosted Redis instances or any Docker Compose-based setup, modules can be loaded by
specifying them in the service configuration. This guide walks through how to install, load, and
manage Redis modules using Docker Compose, along with common issues and best practices.

Redis modules are typically compiled as shared object (.so) files and must be loaded at server
startup using the --loadmodule option. These module files are mounted into the container and
referenced from within the container’s file system. To use a module like RedisBloom in a Docker
Compose setup:

Mount the module file into the container and load it:

Here:

./modules/redisbloom.so is the local path on your host machine.
/data/redisbloom.so is the path inside the container.

Installing and Updating an
Extension

Installing and Enabling Redis
Modules

Update docker-compose.yml

services:

 redis:

 image: redis/redis-stack-server:latest

 volumes:

 - ./modules/redisbloom.so:/data/redisbloom.so

 command: ["redis-server", "--loadmodule", "/data/redisbloom.so"]

 ports:

 - "6379:6379"

https://oss.redis.com/redisbloom/
https://oss.redis.com/redistimeseries/
https://oss.redis.com/redisjson/
https://oss.redis.com/redisearch/

Make sure the .so file exists in the specified directory before running Docker Compose.

After updating the Compose file, restart the service:

This will reload Redis with the specified module.

Once Redis is running, connect to it using redis-cli:

Run the following command:

Expected output:

This confirms the module (in this case, bf for RedisBloom) is loaded and active.

Redis modules must match the Redis server version and platform. You can verify compatibility
through the module’s documentation or by testing it in a local development setup before using it in
production.

To inspect module-related details:

To verify the correct Redis image is being used:

Restart the Redis Service

docker-compose down

docker-compose up -d

Verify the Module is Loaded

docker-compose exec redis redis-cli -a <yourPassword>

MODULE LIST

1) 1) "name"

 2) "bf"

 3) "ver"

 4) (integer) 20207

Checking Module Availability &
Compatibility

INFO MODULES

If a module fails to load, check the container logs:

This often reveals missing paths or compatibility issues.

Unlike MySQL, Redis does not support dynamic unloading of modules once loaded. To update or
remove a module:

1. Stop the container:

2. Edit docker-compose.yml:

Change the .so file path if updating the module.
Remove the --loadmodule line if unloading the module.

3. Restart the container:

Always test updated modules in staging before applying to production.

Issue Cause Resolution

Redis fails to start Incorrect module path or
incompatible binary

Check docker-compose logs redis and verify the .so
path and architecture

MODULE command not
recognized

Using a Redis image without
module support

Use an image like redis/redis-stack-server which
supports modules

docker-compose exec redis redis-server --version

docker-compose logs redis

Updating or Unloading Modules

docker-compose down

docker-compose up -d

Troubleshooting Common Module
Issues

Issue Cause Resolution

“Can’t open .so file” Volume not mounted or
permission denied

Ensure the .so file exists locally and is readable by
Docker

Module not appearing in
MODULE LIST

Module failed to load silently Double-check command and container logs

Commands from the module
not recognized

Module not loaded properly or
incompatible

Validate Redis version and module compatibility

Redis modules execute native code with the same privileges as Redis itself. Only load trusted,
vetted modules from official sources. Avoid uploading or executing arbitrary .so files from unknown
authors. In multi-tenant or exposed environments, module misuse could lead to instability or
security risks. Ensure the redis user inside the container has limited privileges, and module
directories have appropriate permissions.

Security Considerations

How-To Guides

Regular backups are essential when running a Redis deployment especially if you’re using it for
persistent data. While Elestio handles automated backups by default, you may want to create
manual backups before configuration changes, retain a local archive, or test backup automation.
This guide walks through multiple methods for creating Redis backups on Elestio, including
dashboard snapshots, command-line approaches, and Docker Compose-based setups. It also
explains backup storage, retention, and automation using scheduled jobs.

If you’re using Elestio’s managed Redis service, the simplest way to perform a full backup is
directly through the Elestio dashboard. This creates a snapshot of your current Redis dataset and
stores it in Elestio’s infrastructure. These snapshots can be restored later from the same interface,
which is helpful when making critical changes or testing recovery workflows.

To trigger a manual Redis backup on Elestio:

1. Log in to the Elestio dashboard.
2. Navigate to your Redis service or cluster.
3. Click the Backups tab in the service menu.
4. Choose Back up now to generate a manual snapshot.

This method is recommended for quick, reliable backups without needing to use the command line.

Creating Manual Backups

Manual Service Backups on Elestio

https://elest.io
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-20-at-12-27-22-pm.jpg

If your Redis instance is deployed via Docker Compose (as is common on Elestio-hosted
environments), you can manually back up Redis by copying its internal snapshot files. Redis
persistence is managed through RDB (Redis Database) and optionally AOF (Append-Only File)
logs, both of which reside in the container’s filesystem.

Go to your deployed Redis service in the Elestio dashboard, navigate to Tools > Terminal, and log
in using the credentials provided.

Navigate to your app directory:

This is the working directory of your Docker Compose project, which contains the docker-
compose.yml file.

Redis typically saves snapshots automatically based on configuration, but you can force one
manually:

This command triggers an immediate snapshot. The resulting file is usually called dump.rdb.

Use docker cp to copy the snapshot file (and optionally the AOF file, if enabled) from the container
to your host system:

If AOF persistence is also enabled (via appendonly yes in redis.conf), back up the AOF log as well:

This gives you complete Redis data snapshots for storage or future recovery.

Manual Backups Using Docker
Compose

Access Elestio Terminal

Locate the Redis Container Directory

cd /opt/app/

Trigger an RDB Snapshot (Optional)

docker-compose exec redis redis-cli SAVE

Copy Backup Files from the Container

docker cp $(docker-compose ps -q redis):/data/dump.rdb ./backup_$(date +%F).rdb

docker cp $(docker-compose ps -q redis):/data/appendonly.aof ./appendonly_$(date +%F).aof

After creating backups, it’s important to store them securely and manage retention properly. Redis
backups are binary files and can be quite compact (RDB) or larger and more frequent (AOF),
depending on configuration.

Use clear naming: redis_backup_2025_05_19.rdb
Store off-site or on cloud storage (e.g. AWS S3, Backblaze, encrypted storage).
Retain: 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Automate old file cleanup with cron jobs or retention scripts.
Optionally compress backups with gzip or xz to reduce space.

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

1. Edit the crontab:

2. Add a job like:

Make sure /backups/ exists and is writable by the cron user.

You can also compress the file or upload to cloud storage in the same script:

Backup Storage & Retention Best
Practices

Guidelines to Follow:

Automating Redis Backups (cron)

Example: Daily Backup at 3 AM

crontab -e

0 3 * * * docker-compose -f /opt/app/docker-compose.yml exec redis redis-cli SAVE && \

docker cp $(docker-compose -f /opt/app/docker-compose.yml ps -q redis):/data/dump.rdb

/backups/redis_backup_$(date +\%F).rdb

gzip /backups/redis_backup_$(date +\%F).rdb

rclone copy /backups/remote-dir/ remote:redis-backups

Format Description Restore Method

dump.rdb Binary snapshot of full dataset Stop Redis, replace dump.rdb, then
restart Redis

appendonly.aof Append-only command log Stop Redis, replace AOF file, then
restart Redis

To restore from a backup:

1. Stop Redis (docker-compose down)
2. Replace the corresponding file in the volumes or /data directory.
3. Restart Redis (docker-compose up -d)

Backup Format and Restore Notes

How-To Guides

Restoring Redis backups is essential for disaster recovery, staging environment duplication, or
rolling back to a known state. Elestio supports backup restoration both through its web dashboard
and manually through Docker Compose and command-line methods. This guide explains how to
restore Redis backups from RDB or AOF files, covering both full and partial restore scenarios, and
includes solutions for common restoration issues.

This method applies when you have an RDB (dump.rdb) or AOF (appendonly.aof) file from a
previous backup. To restore the backup, you replace the existing Redis data file(s) inside the data
directory used by the container. Redis loads this data at startup, making it essential to stop the
server before replacing the files.

Shut down the Redis container cleanly to avoid file corruption:

Move your backup file into the appropriate location inside the Redis volume. Assuming you have a
backup named backup_2025_05_19.rdb:

Make sure this file path corresponds to the volume used in your docker-compose.yml. For example:

If you’re restoring an AOF file, replace appendonly.aof instead:

Restoring a Backup

Restoring from a Backup via
Terminal

Stop the Redis Container

docker-compose down

Replace the Backup File

cp ./backup_2025_05_19.rdb /opt/app/data/dump.rdb

volumes:

 - ./data:/data

cp ./appendonly_2025_05_19.aof /opt/app/data/appendonly.aof

Start Redis again so it loads the restored data file:

Redis will automatically load dump.rdb or appendonly.aof depending on your configuration (set in
redis.conf with appendonly yes/no).

If you prefer working inside the container, you can also copy the file directly into the Redis
container using Docker commands.

If restoring an AOF file:

Redis will detect the updated data file and load it during startup.

Redis does not natively support partial restores like MySQL. However, you can achieve similar
outcomes with the following strategies:

If you exported individual key-value pairs using the redis-cli --rdb or similar logic, you can use a
script to reinsert only those keys.

Example using redis-cli and a JSON/CSV conversion:

Restart Redis

docker-compose up -d

Restoring via Docker Compose
Terminal

Copy the Backup File into the Container

docker cp ./backup_2025_05_19.rdb $(docker-compose ps -q redis):/data/dump.rdb

docker cp ./appendonly_2025_05_19.aof $(docker-compose ps -q redis):/data/appendonly.aof

Restart Redis Inside Docker Compose

docker-compose restart redis

Partial Restores in Redis

Restore Selected Keys via Redis CLI

This approach assumes you have extracted individual key-value pairs into a format suitable for
scripting.

If your append-only file includes only a subset of commands, Redis will replay those on startup. You
can prepare a stripped-down AOF file for specific keys or operations, then follow the full AOF
restore method described above.

Restoring Redis data can fail for a few specific reasons, especially related to permissions, missing
config values, or service conflicts. Here are some frequent issues and how to solve them.

Cause: You’re attempting to issue commands or restore data into a Redis instance that requires
authentication.

Resolution: Always provide the password with your commands:

For automated scripts, use:

Cause: Corrupted or incompatible dump.rdb or appendonly.aof file.

Resolution: Ensure the backup file matches the Redis version you’re using. Try restoring with a
version of Redis that matches the backup environment.

cat keys_to_restore.txt | while read key; do

 value=$(cat dump.json | jq -r ".\"$key\"")

 redis-cli SET "$key" "$value"

done

Restore from A Partial AOF

Common Errors & How to Fix Them

1. NOAUTH Authentication Required

(error) NOAUTH Authentication required.

redis-cli -a yourpassword

redis-cli -a "$REDIS_PASSWORD" < restore_script.txt

2. Redis Fails to Start After Restore

Fatal error loading the DB: Invalid RDB format

Cause: Redis is configured to use AOF, but only an RDB file was restored or vice versa.

Resolution: Confirm your redis.conf or container command: entry defines which persistence
method is enabled:

Make sure the correct file (either dump.rdb or appendonly.aof) is in /data.

Resolution: Ensure your terminal session or script has write access to the target directory. Use
sudo if needed:

3. Data Not Restored

appendonly yes # For AOF

appendonly no # For RDB

4. Permission Denied When Copying Files

cp: cannot create regular file ‘/opt/app/data/dump.rdb’: Permission denied

sudo cp ./backup.rdb /opt/app/data/dump.rdb

How-To Guides

Slow commands can impact Redis performance, especially under high load or when poorly
optimized operations are used. Whether you’re using Redis on Elestio through the dashboard,
accessing it inside a Docker Compose container, or connecting via CLI tools, Redis provides native
tooling to monitor and troubleshoot performance issues. This guide explains how to capture slow
operations using the Redis slow log, analyze command latency, and optimize performance through
configuration and query changes.

Redis includes a built-in slowlog feature that tracks commands exceeding a configured execution
time threshold. This is useful for identifying operations that may block the server or cause
application latency.

Use the Redis CLI to connect to your instance:

Check the threshold that defines a “slow” command (in microseconds):

The default is 10000 (10 milliseconds). Any command exceeding this will be logged.

To inspect recent slow commands:

Identifying Slow Queries

Inspecting Slow Commands from the
Terminal

Connect to your Redis instance via terminal

redis-cli -h <host> -p <port> -a <password>

Replace <host>, <port>, and <password> with your Redis credentials from the
Elestio dashboard.“

View the slowlog threshold

CONFIG GET slowlog-log-slower-than

View the slow query log

SLOWLOG GET 10

This shows the 10 most recent slow commands. Each entry includes the execution time,
timestamp, and command details.

If your Redis instance is deployed with Docker Compose, slow command inspection can be done
inside the running container environment.

Open a shell inside the container:

Then connect to Redis using:

Make sure the REDIS_PASSWORD environment variable is defined in your Docker Compose file.

You can view or change the slowlog threshold dynamically:

Set a lower threshold (e.g., 5000) temporarily to capture more entries during testing.

The number of slowlog entries stored is configurable:

To increase the history size:

This allows storing more slow command logs for better visibility.

Redis also includes latency monitoring tools that track spikes and identify root causes.

Analyzing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Check and adjust the slowlog threshold

CONFIG SET slowlog-log-slower-than 10000

Check how many entries are stored

CONFIG GET slowlog-max-len

CONFIG SET slowlog-max-len 256

Using the Latency Monitoring Feature

Latency tracking is often enabled by default. You can manually inspect events with:

This command gives a report of latency spikes and their possible causes (e.g., slow commands,
forks, or blocked I/O).

To inspect latency for a specific category:

Common tracked events include command, fork, aof-write, etc.

Redis performance can degrade due to specific patterns of usage, large keys, blocking commands,
or non-optimized pipelines.

Large key operations: Commands like LRANGE, SMEMBERS, HGETALL on large datasets.
Blocking operations: Commands like BLPOP, BRPOP, or Lua scripts with long loops.
Forking overhead: Caused by background saves or AOF rewrites.

Use SCAN instead of KEYS for iteration.
Limit result sizes from large structures (e.g., use LRANGE 0 99 instead of full LRANGE).
Use pipelining to batch requests and reduce round trips.
Avoid multi-key operations when possible in a clustered setup.

Performance tuning can also involve modifying Redis settings related to memory, persistence, and
networking.

Update these settings via redis.conf or dynamically with CONFIG SET:

Enable latency monitoring

LATENCY DOCTOR

View latency history for specific events

LATENCY HISTORY command

Understanding and Resolving Common
Bottlenecks

Common causes of slow commands:

Best practices to avoid slow commands:

Optimizing with Configuration Changes

Use caution with persistence settings. Disabling RDB or AOF improves performance but removes
durability.

CONFIG SET maxmemory-policy allkeys-lru

CONFIG SET save ""

How-To Guides

Long-running commands in Redis can block the single-threaded event loop, causing delayed
responses or complete unresponsiveness in production environments like Elestio. Monitoring and
handling these commands is critical for maintaining performance and reliability. This guide explains
how to detect, analyze, and terminate blocking or slow commands in Redis using terminal tools,
Docker Compose setups, and Redis’s built-in logging features. It also includes prevention strategies
to avoid performance bottlenecks in the future.

Redis does not support multitasking like traditional SQL databases, so any command that takes too
long blocks the entire server. To inspect active commands and see which clients may be running
long operations, use the Redis CLI.

This command shows all connected clients, including their IP address, command in progress (cmd),
idle time, and total duration. Focus on clients with high idle or age values while still actively
running commands.

To observe commands in real time:

This outputs every operation in real time. It’s useful for spotting blocking commands but should be
used only in staging or during short troubleshooting sessions, as it consumes significant CPU.

Redis provides tools to close problematic connections or interrupt Lua scripts that run for too long.

Detect and terminate long-
running queries

Monitoring Long-Running Commands

Check active clients and their current commands

redis-cli -h <host> -p <port> -a <password> CLIENT LIST

Detect current command load using MONITOR

redis-cli -a <password> MONITOR

Terminating Problematic Commands Safely

Kill a specific client connection

If a client is running a blocking or long operation, you can terminate its connection using its client
ID:

This will drop the connection and stop any running command associated with that client.

If a Lua script is stuck or taking too long:

This stops the currently executing script. If the script has modified data, Redis will return an error
to avoid leaving the database in an inconsistent state.

If your Redis service is running inside a Docker Compose setup on Elestio, you’ll need to access the
container before you can inspect or kill commands.

Inside the container, connect to Redis using:

Then, use CLIENT LIST, SCRIPT KILL, or CLIENT KILL just like from the host.

Redis includes a built-in slowlog that logs commands that exceed a specific execution threshold.

CLIENT KILL ID <id>

You can find the <id> from the CLIENT LIST command.“

Stop a long-running Lua script

SCRIPT KILL

If the script is not killable (e.g., during a write operation), Redis will return an
error. Always use SCRIPT KILL cautiously.“

Managing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Using the Redis Slowlog Feature

Enable and configure slowlog in redis.conf

Update these settings in redis.conf, or set them at runtime:

This shows the 10 most recent slow commands with their timestamp, execution time, and
command details.

Use this to reset the log after reviewing or during maintenance.

Redis includes latency tracking features to help you understand when and why delays occur.

This gives you a summary of observed latency spikes and their causes (e.g., command execution,
AOF rewrite, background saves).

You can replace command with any tracked event like fork, aof-write, or expire-cycle.

Preventing long-running commands is critical since Redis handles all operations on a single thread.

slowlog-log-slower-than 10000 # Log commands slower than 10ms

slowlog-max-len 128 # Keep 128 slow entries

CONFIG SET slowlog-log-slower-than 10000

CONFIG SET slowlog-max-len 128

View the slowlog

SLOWLOG GET 10

Clear the slowlog

SLOWLOG RESET

Analyzing Command Latency Over Time

Generate a diagnostic latency report

LATENCY DOCTOR

View detailed latency history by event

LATENCY HISTORY command

Best Practices to Prevent Long-Running
Commands

Avoid full key scans: Never use KEYS * or SMEMBERS on large sets in production. Use
SCAN instead for incremental iteration.
Limit Lua script duration: Break complex scripts into smaller steps and test for
performance in staging.
Use pipelining: Send multiple commands in one round-trip to reduce overall time spent
per operation.
Limit list and set access: Use ranges or batch operations for large data structures.

Enable eviction policies: To avoid OOM errors that can freeze Redis, enable LRU or LFU
eviction:

Monitor regularly: Use CLIENT LIST, SLOWLOG, and LATENCY in combination to detect
problematic patterns early.

LRANGE mylist 0 99 # Good

LRANGE mylist 0 -1 # Risky on large lists

CONFIG SET maxmemory-policy allkeys-lru

How-To Guides

Running out of disk space in a Redis environment can lead to failed writes, snapshot errors, and
service unavailability. Redis relies on disk storage for persistence (RDB and AOF files), temporary
dumps, and logs especially when persistence is enabled. On platforms like Elestio, while the
infrastructure is managed, users are responsible for monitoring disk usage, configuring retention
policies, and managing backups. This guide covers how to monitor disk consumption, configure
alerts, remove unused data, and follow best practices to prevent full disk scenarios in a Redis setup
using Docker Compose.

Disk usage monitoring is essential for spotting unusual growth before it leads to failures. In Docker
Compose setups, you’ll need both host-level and container-level visibility.

Run this on the host machine to check which mount point is filling up:

This shows available and used space for each volume. Identify the mount point used by your Redis
volume—usually mapped to something like /var/lib/docker/volumes/redis_data/_data.

Open a shell inside the Redis container:

Inside the container, check the data directory size:

This reveals total usage by persistence files (appendonly.aof, dump.rdb, temporary files). You can
inspect individual file sizes with:

Preventing Full Disk Issues

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec redis sh

du -sh /data

ls -lh /data

Monitoring alone isn’t enough—automated alerts and safe cleanup prevent downtime. You can
inspect disk usage across Docker resources on the host with:

To remove a specific unused volume:

If AOF persistence is enabled, the append-only file can grow large over time. You can manually
trigger a rewrite to compact the file:

This creates a smaller AOF file containing the same dataset.

If you are using RDB snapshots, they’re stored in /data within the container (mapped to a host
volume). To clean up, list them first:

Remove unnecessary .rdb files with:

Redis creates temporary files during fork operations for AOF rewrites and RDB saves. These are
stored in the container’s /tmp directory.

Configuring Alerts and Cleaning Up Storage

docker system df

Identify unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Warning: Never delete the volume mapped to your Redis data unless you’ve
backed up its contents and confirmed it is not in use.“

Trigger AOF file compaction

docker-compose exec redis redis-cli BGREWRITEAOF

Clean up old snapshots

docker-compose exec redis ls -lh /data

docker-compose exec redis rm /data/dump-<timestamp>.rdb

Managing & Optimizing Temporary Files

If /tmp fills up, writes and forks may fail. You can change the temporary directory by modifying the
dir directive in redis.conf to point to /data, which is volume-backed:

Restart the container to apply changes.

Long-term disk space health in Redis requires proactive design and ongoing management.

Avoid storing binary blobs: Store large files (images, PDFs, etc.) outside Redis and use
Redis only for keys/metadata. Use object storage for large content.
Disable persistence if not needed: For ephemeral cache use cases, you can disable
persistence entirely to reduce disk usage:

Limit AOF growth: Fine-tune AOF rewrite behavior in redis.conf:

Rotate logs in containers: If logging to file (e.g., /var/log/redis/redis-server.log),
configure logrotate on the host or use Docker log rotation options via docker-compose.yml
:

Evict old keys with TTLs: Set expiration on cache keys to prevent unbounded growth:

Monitor temporary file usage:

docker-compose exec redis du -sh /tmp

dir /data

Best Practices for Disk Space Management

appendonly no

save ""

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

SET session:<id> "data" EX 3600

Monitor data size: Use INFO persistence and INFO memory to track memory usage and
AOF file size:

Offload backups: Backups stored in /data should be moved off the container host. Use
Elestio backup tools or mount a remote backup volume in your docker-compose.yml.

docker-compose exec redis redis-cli INFO memory

docker-compose exec redis redis-cli INFO persistence

How-To Guides

As your Redis data grows especially when using persistence modes like RDB or AOF it’s important
to track how storage is being used. Unchecked growth can lead to full disks, failed writes, longer
startup times, and backup complications. While Elestio handles the hosting, Redis storage tuning
and cleanup remain your responsibility. This guide explains how to inspect keyspace size, analyze
persistence files, detect unnecessary memory usage, and optimize Redis storage under a Docker
Compose setup.

Redis doesn’t have schemas or tables, but its memory and disk footprint can be analyzed using
built-in commands.

From your terminal, connect to the container:

This displays current memory stats. Look for the used_memory_human and maxmemory fields to
understand real usage versus limits.

Output looks like:

This tells you how many keys exist, how many have TTLs set, and their average lifespan. If most
keys never expire, your dataset may grow indefinitely.

Checking Database Size and
Related Issues

Checking Keyspace Usage and Persistence
File Size

Check total memory used by Redis

docker-compose exec redis redis-cli INFO memory

Inspect key count and usage by database

docker-compose exec redis redis-cli INFO keyspace

db0:keys=1250,expires=1200,avg_ttl=34560000

View on-disk file sizes

Inside the Redis container, persistent files live under /data:

Check the sizes of:

dump.rdb (if RDB is enabled)
appendonly.aof (if AOF is enabled)

These files represent your on-disk dataset and can become large if not managed

Redis may accumulate unnecessary memory usage due to expired keys not yet evicted, inefficient
data structures, or infrequent AOF rewrites.

Redis doesn’t provide per-key memory stats natively, but you can sample keys and estimate
memory usage:

This scans a portion of the keyspace and reports the largest keys by type. If a single key is taking
excessive space (e.g., a massive list or set), it may need to be split or purged.

Use the MEMORY USAGE command to analyze specific keys:

You can script this to scan high-traffic prefixes and locate heavy keys.

Redis may fragment memory, reducing efficiency:

A mem_fragmentation_ratio significantly above 1.2 suggests internal fragmentation.

docker-compose exec redis sh -c "ls -lh /data"

Detecting Bloat and Unused Space

Estimate memory usage by key pattern

docker-compose exec redis redis-cli --bigkeys

Analyze memory per key (sample)

docker-compose exec redis redis-cli MEMORY USAGE some:key

Check fragmentation

docker-compose exec redis redis-cli INFO memory | grep fragmentation

Optimizing and Reclaiming Redis Storage

Once you’ve identified memory-heavy keys or large persistence files, Redis offers several tools to
optimize space usage.

If AOF is enabled, it grows over time. To reduce its size:

This background process creates a smaller version of the AOF file without data loss.

Manually delete stale keys or add TTLs to ensure automatic cleanup:

Or set expiration:

Use patterns to delete multiple keys (carefully!):

To enforce automatic eviction when nearing memory limits, In redis.conf (mounted via Docker
volume):

Restart the container to apply changes. This keeps Redis performant under constrained storage.

Trigger AOF rewrite (compacts the appendonly file)

docker-compose exec redis redis-cli BGREWRITEAOF

Delete or expire unused keys

docker-compose exec redis redis-cli DEL obsolete:key

docker-compose exec redis redis-cli EXPIRE session:1234 3600

docker-compose exec redis redis-cli --scan --pattern "temp:*" | xargs -n 100 redis-cli DEL

Avoid FLUSHALL or bulk deletes in production unless absolutely necessary.“
Tune maxmemory and eviction policy

maxmemory 512mb

maxmemory-policy allkeys-lru

Managing and Optimizing Redis Files on
Disk

Monitor data directory inside Docker

Redis typically writes to /data in the container (mapped from a host volume). Check usage from the
host:

List all Docker volumes:

Check Redis volume size (replace <volume_name>):

RDB snapshots (e.g. dump.rdb) are stored in /data. Clean up old or unneeded ones manually:

Ensure backups are offloaded to external storage and not stored alongside the live database.

Use TTLs liberally: Set expiration on all temporary/session keys to prevent unbounded
growth.
Avoid storing large binary blobs: Store images, files, or videos outside Redis. Use
Redis for metadata only.
Rotate logs: If Redis logs to file (e.g., /var/log/redis.log), rotate them via Docker logging
options or tools like logrotate.
In docker-compose.yml

Use efficient data structures: Prefer HASH or SET over storing large JSON blobs as
strings.
Monitor AOF size and compaction frequency: If AOF is growing too fast, adjust these
in redis.conf:

docker system df

docker volume ls

sudo du -sh /var/lib/docker/volumes/<volume_name>/_data

Clean up RDB snapshots and old backups

docker-compose exec redis rm /data/dump-<timestamp>.rdb

Best Practices for Redis Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

Archive analytics data: For time-series or metrics data, periodically move old entries to
cold storage.
Back up to offsite storage: Avoid keeping snapshots on the same disk or volume. Use
Elestio’s backup integrations to store them in cloud or remote storage.

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

Database Migration

Database Migration

Migrating or cloning services across cloud providers or geographic regions is a critical part of
modern infrastructure management. Whether you’re optimizing for latency, preparing for disaster
recovery, meeting regulatory requirements, or simply switching providers, a well-planned migration
ensures continuity, performance, and data integrity. This guide outlines a structured methodology
for service migration, applicable to most cloud-native environments.

Before initiating a migration, thorough planning and preparation are essential. This helps avoid
unplanned downtime, data loss, or misconfiguration during the move:

Evaluate the Current Setup: Begin by documenting the existing service’s configuration.
This includes runtime environments (container images, platform versions), persistent data
(databases, object storage), network rules (ports, firewalls), and application dependencies
(APIs, credentials, linked services).
Define the Migration Target: Choose the new cloud provider or region you plan to
migrate to. Confirm service compatibility, resource limits, and geographic latency
requirements. If you’re replicating an existing environment, make sure the target region
supports the same compute/storage features and versions.
Provision the Target Environment: Set up the target infrastructure where the service
will be cloned. This could involve creating new Kubernetes clusters, VM groups, container
registries, databases, or file storage volumes depending on your stack.
Backup the Current Service: Always create a full backup or snapshot of the current
service and its associated data before proceeding. This acts as a rollback point in case of
migration issues and ensures recovery in the event of failure.

The first step in executing a clone is to replicate the configuration of the original service in the
target environment. This involves deploying the same container image or service binary using the
same runtime settings. If you’re using Kubernetes or container orchestrators, this can be done via
Helm charts or declarative manifests. Pay close attention to environment variables, secrets,
mounted paths, storage class definitions, and health check configurations to ensure a consistent
runtime environment.

Cloning a Service to Another
Provider or Region

Pre-Migration Preparation

Cloning Execution

Next, you’ll need to migrate any persistent data tied to the service. For file-based storage, tools
like rsync or rclone are effective for copying volume contents over SSH or cloud storage backends.
It’s crucial to verify compatibility across disk formats, database versions, and encoding standards
to avoid corruption or mismatched behavior.

After replicating the environment and data, it’s important to validate the new service in isolation.
This means confirming that all application endpoints respond as expected, background tasks or
cron jobs are functioning, and third-party integrations (e.g., payment gateways, S3 buckets) are
accessible. You should test authentication flows, data read/write operations, and retry logic to
ensure the new service is functionally identical. Use observability tools to monitor resource
consumption and application logs during this stage.

Once validation is complete, configure DNS and route traffic to the new environment. This might
involve updating DNS A or CNAME records, changing cloud load balancer configurations, or
applying new firewall rules. For high-availability setups, consider using health-based routing or
weighted DNS to gradually transition traffic from the old instance to the new one.

Once the new environment is live and receiving traffic, focus on optimizing and securing the setup:

Validate Application Functionality: Test all integrations, user workflows, and
background jobs to confirm proper behavior. Review logs for silent errors or timeouts.
Ensure all applications pointing to the service are updated with the new URL or connection
string.
Monitor Performance: Analyze load, CPU, memory, and storage utilization. Scale
resources as needed, or optimize runtime settings for the new provider/region. Enable
autoscaling where applicable.
Secure the Environment: Implement firewall rules, IP restrictions, and access controls.
Rotate secrets and validate that no hardcoded credentials or endpoints point to the old
service.
Cleanup and Documentation: Once validated, decommission the old setup safely.
Update internal documentation with new deployment details, endpoint addresses, and any
configuration changes.

Cloning a database service, particularly for engines like Redis offers several operational and
strategic advantages. It allows teams to test schema migrations, version upgrades, or major
application features in an isolated environment without affecting production. By maintaining a

Post-Migration Validation and
Optimization

Benefits of Cloning

cloned copy, developers and QA teams can work against realistic data without introducing risk.

Cloning also simplifies cross-region redundancy setups. A replica in another region can be
promoted quickly if the primary region experiences an outage. For compliance or analytics
purposes, cloned databases allow for read-only access to production datasets, enabling safe
reporting or data processing without interrupting live traffic.

Additionally, rather than building a new environment from scratch, you can clone the database into
another provider, validate it, and cut over with minimal disruption. This helps maintain operational
continuity and reduces the effort needed for complex migrations.

Database Migration

Elestio provides a streamlined and reliable approach for migrating Redis instances from various
environments such as on-premises servers, self-managed cloud deployments, or other managed
services into its fully managed Redis platform. This migration process is designed to ensure data
consistency, minimize downtime, and simplify the operational complexity of managing Redis
infrastructure.

Before initiating your Redis migration, proper preparation is essential to ensure a seamless and
error-free transition:

Create an Elestio Account: Sign up on the Elestio platform to access its suite of
managed services. This account will serve as the central hub for provisioning and
managing your Redis instance.
Deploy the Target Redis Service: Create a new Redis service on Elestio to act as the
migration destination. Make sure the version matches your current Redis setup to avoid
compatibility issues. Review Elestio’s Redis documentation for details on supported
features, such as persistence modes (AOF, RDB), module support, and cluster
configurations.

With the target environment ready, proceed with the Redis migration using the Elestio migration
interface:

1. Access the Migration Tool: Navigate to your Redis service overview on the Elestio
dashboard. Select the “Migrate Database” option to initiate the guided migration
workflow.

2. Configure Migration Settings: A prompt will appear to confirm that the target Redis
instance has sufficient memory and disk capacity to receive the source data. Once
verified, click “Get started” to begin.

3. Validate Source Redis Connection: Enter the connection details for your existing Redis
instance, including:

Hostname – IP address or domain of the source Redis server

Database Migration Services for
Redis

Key Steps in Migrating to Elestio

Pre-Migration Preparation

Initiating the Migration Process

Port – Default Redis port is 6379, but on Elestio it is configured as 26379
Password – If your Redis instance is secured with authentication
Database Number – (Optional) If using a specific logical database within Redis

Click “Run Check” to validate the source connection. This ensures Elestio can securely access and
read from your Redis instance. These details are typically available in your current Redis
deployment configuration or environment variables.

4. Execute the Migration: If all checks pass successfully, start the migration by selecting “Start
migration.” Elestio will begin transferring the in-memory dataset and persistent data (if
applicable) into the new environment. Real-time logs and progress indicators will help you monitor
the operation, making it easy to identify and resolve any issues promptly.

Once the Redis migration is complete, it’s critical to validate the deployment and ensure the new
instance performs optimally:

Verify Data Consistency: Use redis-cli or Elestio’s integrated tools to confirm that all
keys, data types, and values were correctly transferred. Compare key counts and sample
data between source and target. If using persistence (RDB or AOF), check the loading
behavior on restart to ensure durability.
Test Application Connectivity: Update application configurations or connection strings
to point to the new Redis instance. Verify that all interactions such as caching, pub/sub, or
session storage are functioning as expected.
Optimize Performance: Take advantage of Elestio’s performance features. Monitor
memory usage, eviction policies, and throughput in real-time using the platform’s
dashboard. Adjust Redis configurations for your workload type and enable auto-scaling if
supported.
Implement Security Best Practices: Secure your new Redis instance by configuring
firewall rules, enabling TLS (if applicable), and rotating authentication credentials. Elestio
supports access management features that help restrict unauthorized connections and

Post-Migration Validation and Optimization

https://docs.elest.io/uploads/images/gallery/2025-05/IT7image.png

secure data in transit.
Clean Up and Document: After successful validation, decommission the old Redis
environment if no longer needed. Update your internal documentation to reflect the new
Redis endpoint, authentication details, and any configuration changes made during
migration.

Migrating Redis to Elestio delivers several operational and strategic benefits:

Simplified Management: Elestio automates the operational overhead of managing
Redis, including monitoring, backups, and software updates. The centralized dashboard
provides real-time visibility into performance, key metrics, and system health. Users can
modify environment variables, upgrade service tiers, and manage Redis modules without
deep DevOps intervention.
Security: Elestio keeps Redis instances up to date with the latest security patches. It
offers built-in mechanisms for securely managing credentials and limits unauthorized
access through firewall rules and network isolation. Backup automation ensures data is
safe and recoverable.
Performance: Redis instances on Elestio are tuned for low-latency performance and can
handle real-time, high-throughput workloads. The infrastructure supports both standalone
and clustered Redis deployments, allowing for optimal performance under load.
Scalability: Elestio’s Redis services are built to scale with your application. Users can
increase memory capacity, CPU allocation, or attach additional storage as demand grows.
The platform supports seamless plan upgrades without significant downtime, enabling
consistent growth and workload flexibility.

Benefits of Using Elestio for Redis

Database Migration

Manual migrations using Redis’s built-in tools, such as redis-cli and RDB (Redis Database) files, are
ideal for users who require full control over data export and import particularly during transitions
between providers, Redis version upgrades, or importing existing self-managed Redis datasets into
Elestio’s managed environment. This guide walks through the process of performing a manual
migration to and from Elestio Redis services using command-line tools, ensuring data portability,
consistency, and transparency at every step.

Manual migration using native Redis tools is well-suited for scenarios that demand complete
control over the migration process. It is especially useful when transferring data from a self-hosted
Redis instance, an on-premises server, or another cloud provider into Elestio’s managed Redis
service. This method supports one-time imports without requiring persistent connections between
source and destination systems.

It also provides a reliable approach for performing version upgrades. Because RDB files contain a
snapshot of the dataset in a portable format, they can be restored into newer Redis versions with
minimal compatibility issues. When Elestio’s built-in tools are not applicable such as in migrations
from isolated environments or selective key transfers manual migration becomes the preferred
option. It also enables offline backup archiving, providing users with transportable and restorable
datasets independent of platform-specific formats.

Before starting the migration, ensure that Redis is properly installed on both the source system and
your Elestio service. The source Redis server must allow access (if remote) and have a user with
sufficient privileges to export the dataset, including read access to all relevant keys and data
types.

On the Elestio side, provision a Redis service through the dashboard. Once it’s active, retrieve the
connection credentials from the Database Info section. This includes host, port, and password.
Verify that your public IP is allowed under Cluster Overview > Security > Limit access per IP,
or the Redis port will not be reachable.

Manual Redis Migration Using
redis-cli and RDB Files

When to Use Manual Migration

Performing the Migration

Prepare the Environments

Use Redis’s RDB snapshotting method to create a backup of the dataset. This process serializes the
current state of your Redis database into a binary .rdb file.

To trigger a manual snapshot, run:

Once the command completes, locate the resulting dump.rdb file on the source system. This is
typically stored in /var/lib/redis/ or a path defined in your Redis configuration.

Alternatively, you can generate an RDB file using:

This creates a portable snapshot of the entire dataset without modifying the source instance’s
configuration.

If your local system differs from the one with access to Elestio’s Redis service, transfer the dump
file using a secure file transfer tool such as SCP:

Ensure the file is available on the system you will use to perform the restore. You do not need to
upload the RDB file directly to the Elestio service restores are performed remotely using Redis
commands.

To restore data into Elestio, start a temporary local Redis instance using the dump file:

This allows you to access the original dataset locally. Then, connect to both the local and Elestio
Redis instances and copy keys using redis-cli. For example:

Create a Backup Using RDB

redis-cli -h <source_host> -p <source_port> SAVE

redis-cli --rdb backup.rdb

Transfer the Dump File to the Target

scp backup.rdb user@host:/path/to/restore-system/

Restore the Dataset to Elestio

redis-server --dbfilename dump.rdb --dir /path/to/rdb/

redis-cli -h <source_host> --scan | while read key; do

 redis-cli -h <source_host> DUMP "$key" | \

 redis-cli -h <elestio_host> -p <elestio_port> -a <elestio_password> RESTORE "$key" 0 -

done

This approach reads each key from the source instance and restores it to the Elestio-managed
Redis instance. Ensure that both instances are reachable and that no firewall or access rules block
communication.

For large datasets or environments with complex key structures, consider using community tools
like redis-copy or redis-migrate-tool to streamline key transfers.

After completing the import, verify that the migration was successful by connecting to the Elestio
Redis instance and inspecting the dataset.

Start by checking the total key count:

Review specific keys to confirm data consistency:

Also verify the integrity of sets, hashes, lists, and sorted sets if used in your application. Ensure
that your application connects to the new Redis instance without issues and performs expected
operations.

If you’ve updated environment variables or configuration files, confirm that your changes are
reflected in the application deployment.

Manual Redis migration using redis-cli and RDB files offers several important advantages:

Portability and Compatibility: RDB files are standard Redis snapshot formats that can
be restored into any Redis-compatible instance, whether hosted locally, in containers, or
in the cloud.
Version Flexibility: Migrate across Redis versions using forward-compatible RDB
snapshots, without relying on binary compatibility or replication.
Offline Storage: Backup files can be stored offline, versioned, and archived as part of
disaster recovery or compliance processes.
Platform Independence: Elestio does not enforce proprietary formats. Native Redis
tools give you complete control over export, transfer, and restoration operations.

Validate the Migration

redis-cli -h <elestio_host> -p <elestio_port> -a <elestio_password> DBSIZE

redis-cli -h <elestio_host> -p <elestio_port> -a <elestio_password> KEYS *

Benefits of Manual Migration

Cluster Management

Cluster Management

Elestio provides a complete solution for setting up and managing software clusters. This helps
users deploy, scale, and maintain applications more reliably. Clustering improves performance and
ensures that services remain available, even if one part of the system fails. Elestio supports
different cluster setups to handle various technical needs like load balancing, failover, and data
replication.

Elestio supports clustering for a wide range of open-source software. Each is designed to support
different use cases like databases, caching, and analytics:

MySQL:
Supports Single Node, Primary/Replica, and Multi-Master cluster types. These allow users
to create simple setups or more advanced ones where reads and writes are distributed
across nodes. In a Primary/Replica setup, replicas are updated continuously through
replication. These configurations are useful for high-traffic applications that need fast and
reliable access to data.
PostgreSQL:
PostgreSQL clusters can be configured for read scalability and failover protection.
Replication ensures that data written to the primary node is copied to replicas. Clustering
PostgreSQL also improves query throughput by offloading read queries to replicas. Elestio
handles replication setup and node failover automatically.
Redis/KeyDB/Valkey:
These in-memory data stores support clustering to improve speed and fault tolerance.
Clustering divides data across multiple nodes (sharding), allowing horizontal scaling.
These tools are commonly used for caching and real-time applications, so fast failover and
data availability are critical.
Hydra and TimescaleDB:
These support distributed and time-series workloads, respectively. Clustering helps
manage large datasets spread across many nodes. TimescaleDB, built on PostgreSQL,
benefits from clustering by distributing time-based data for fast querying. Hydra uses
clustering to process identity and access management workloads more efficiently in high-
load environments.

Overview

Supported Software for Clustering:

Elestio offers several clustering modes, each designed for a different balance between simplicity,
speed, and reliability:

Single Node:
This setup has only one node and is easy to manage. It acts as a standalone Primary
node. It’s good for testing, development, or low-traffic applications. Later, you can scale to
more nodes without rebuilding the entire setup. Elestio lets you expand this node into a
full cluster with just a few clicks.
Primary/Replica:
One node (Primary) handles all write operations, and one or more Replicas handle read
queries. Replication is usually asynchronous and ensures data is copied to all replicas.
This improves read performance and provides redundancy if the primary node fails.
Elestio manages automatic data syncing and failover setup.

Note: Elestio is frequently adding support for more clustered software like OpenSearch,
Kafka, and ClickHouse. Always check the Elestio catalogue for the latest supported services.

Cluster Configurations:

Cluster Management Features:

https://docs.elest.io/uploads/images/gallery/2025-05/Ljnimage.png

Elestio’s cluster dashboard includes tools for managing, monitoring, and securing your clusters.
These help ensure stability and ease of use:

Node Management:
You can scale your cluster by adding or removing nodes as your app grows. Adding a node
increases capacity; removing one helps reduce costs. Elestio handles provisioning and
configuring nodes automatically, including replication setup. This makes it easier to scale
horizontally without downtime.
Backups and Restores:
Elestio provides scheduled and on-demand backups for all nodes. Backups are stored
securely and can be restored if something goes wrong. You can also create a snapshot
before major changes to your system. This helps protect against data loss due to failures,
bugs, or human error.
Access Control:
You can limit access to your cluster using IP allowlists, ensuring only trusted sources can
connect. Role-based access control (RBAC) can be applied for managing different user
permissions. SSH and database passwords are generated securely and can be rotated
easily from the dashboard. These access tools help reduce the risk of unauthorized
access.
Monitoring and Alerts:
Real-time metrics like CPU, memory, disk usage, and network traffic are available through
the dashboard. You can also check logs for troubleshooting and set alerts for high
resource usage or failure events. Elestio uses built-in observability tools to monitor the
health of your cluster and notify you if something needs attention. This allows you to
catch problems early and take action.

Cluster Management

Creating a cluster is a foundational step when deploying services in Elestio. Clusters provide
isolated environments where you can run containerized workloads, databases, and applications.
Elestio’s web dashboard helps the process, allowing you to configure compute resources, choose
cloud providers, and define deployment regions without writing infrastructure code. This guide
walks through the steps required to create a new cluster using the Elestio dashboard.

To get started, you’ll need an active Elestio account. If you’re planning to use your own
infrastructure, make sure you have valid credentials for your preferred cloud provider (like AWS,
GCP, Azure, etc.). Alternatively, you can choose to deploy clusters using Elestio-managed
infrastructure, which requires no external configuration.

Once you’re logged into the Elestio dashboard, navigate to the Clusters section from the sidebar.
You’ll see an option to Create a new cluster—clicking this will start the configuration process.
The cluster creation flow is flexible but simple for defining essential details like provider, region,
and resources in one place.

Deploying a New Cluster

Prerequisites

Creating a Cluster

Now, select the database service of your choice that you need to create in a cluster environment.
Click on Select button as you choose one.

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-23-at-2-09-00-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-12-47-49-pm.jpg

During setup, you’ll be asked to choose a hosting provider. Elestio supports both managed and
BYOC (Bring Your Own Cloud) deployments, including AWS, DigitalOcean, Hetzner, and custom
configurations. You can then select a region based on latency or compliance needs, and specify the
number of nodes along with CPU, RAM, and disk sizes per node.

If you’re setting up a high-availability cluster, the dashboard also allows you to configure cluster-
related details under Cluster configuration, where you get to select things like replication
modes, number of replicas, etc. After you’ve configured the cluster, review the summary to ensure
all settings are correct. Click the Create Cluster button to begin provisioning.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-12-48-23-pm.jpg

Elestio will start the deployment process, and within a few minutes, the cluster will appear in your
dashboard. Once your cluster is live, it can be used to deploy new nodes and additional
configurations. Each cluster supports real-time monitoring, log access, and scaling operations
through the dashboard. You can also set up automated backups and access control through built-in
features available in the cluster settings.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-12-48-56-pm.jpg

Cluster Management

Node management plays a critical role in operating reliable and scalable infrastructure on Elestio.
Whether you’re deploying stateless applications or stateful services like databases, managing the
underlying compute units nodes is essential for maintaining stability and performance.

In Elestio, a node is a virtual machine that contributes compute, memory, and storage resources to
a cluster. Clusters can be composed of a single node or span multiple nodes, depending on
workload demands and availability requirements. Each node runs essential services and containers
as defined by your deployed applications or databases.

Nodes in Elestio are provider-agnostic, meaning the same concepts apply whether you’re using
Elestio-managed infrastructure or connecting your own cloud provider (AWS, Azure, GCP, etc.).
Each node is isolated at the VM level but participates fully in the cluster’s orchestration and
networking. This abstraction allows you to manage infrastructure without diving into the
complexity of underlying platforms.

The Elestio dashboard allows you to manage the lifecycle of nodes through clearly defined
operations. These include:

Creating a node, which adds capacity to your cluster and helps with horizontal scaling of
services. This is commonly used when load increases or when preparing a high-availability
deployment.
Deleting a node, which removes underutilized or problematic nodes. Safe deletion
includes draining workloads to ensure service continuity.
Promoting a node, which changes the role of a node within the cluster—typically used in
clusters with redundancy, where certain nodes may need to take on primary or leader
responsibilities.

Each of these operations is designed to be safely executed through the dashboard and is validated
against the current cluster state to avoid unintended service disruption. These actions are
supported by Elestio’s backend orchestration, which handles tasks like container rescheduling and
load balancing when topology changes.

Node Management

Understanding Nodes

Node Operations

Monitoring is a key part of effective node management. Elestio provides per-node visibility through
the dashboard, allowing you to inspect CPU, memory, and disk utilization in real time. Each
node also exposes logs, status indicators, and health checks to help detect anomalies or
degradation early.

In addition to passive monitoring, the dashboard supports active maintenance tasks. You can
reboot a node when applying system-level changes or troubleshooting, or drain a node to safely
migrate workloads away from it before performing disruptive actions. Draining ensures that
running containers are rescheduled on other nodes in the cluster, minimizing service impact.

For production setups, combining resource monitoring with automation like scheduled reboots, log
collection, and alerting can help catch issues before they affect users. While Elestio handles many
aspects of orchestration automatically, having visibility at the node level helps teams make
informed decisions about scaling, updates, and incident response.

Cluster-wide resource graphs and node-level metrics are also useful for capacity planning.
Identifying trends such as memory saturation or disk pressure allows you to preemptively scale or
rebalance workloads, reducing the risk of downtime.

Monitoring and Maintenance

Cluster Management

As your application usage grows or your infrastructure requirements change, scaling your cluster
becomes essential. In Elestio, you can scale horizontally by adding new nodes to an existing
cluster. This operation allows you to expand your compute capacity, improve availability, and
distribute workloads more effectively.

There are several scenarios where adding a node becomes necessary. One of the most common
cases is resource saturation when existing nodes are fully utilized in terms of CPU, memory, or
disk. Adding another node helps distribute the workload and maintain performance under load.

In clusters that run stateful services or require high availability, having additional nodes
ensures that workloads can fail over without downtime. Even in development environments, nodes
can be added to isolate environments or test services under production-like load conditions.
Scaling out also gives you flexibility when deploying services with different resource profiles or
placement requirements.

To begin, log in to the Elestio dashboard and navigate to the Clusters section from the sidebar.
Select the cluster you want to scale. Once inside the cluster view, switch to the Nodes tab. This
section provides an overview of all current nodes along with their health status and real-time
resource usage.

Adding a Node

Need to Add a Node

Add a Node to Cluster

https://dash.elest.io/
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-12-55-47-pm.jpg

To add a new node, click the “Add Node” button. This opens a configuration panel where you can
define the specifications for the new node. You’ll be asked to specify the amount of CPU, memory,
and disk you want to allocate. If you’re using a bring-your-own-cloud setup, you may also need to
confirm or choose the cloud provider and deployment region.

After configuring the node, review the settings to ensure they meet your performance and cost
requirements. Click “Create” to initiate provisioning. Elestio will begin setting up the new node,
and once it’s ready, it will automatically join your cluster.

Once provisioned, the new node will appear in the node list with its own metrics and status
indicators. You can monitor its activity, verify that workloads are being scheduled to it, and access
its logs directly from the dashboard. From this point onward, the node behaves like any other in the
cluster and can be managed using the same lifecycle actions such as rebooting or draining.

After the node has been added, it becomes part of the active cluster and is available for scheduling
workloads. Elestio’s orchestration layer will begin using it automatically, but you can further

Post-Provisioning Considerations

https://docs.elest.io/uploads/images/gallery/2025-05/W0Escreenshot-2025-05-15-at-12-55-47-pm-copy.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-04-56-pm.jpg

customize service placement through resource constraints or affinity rules if needed.

For performance monitoring, the dashboard provides per-node metrics, including CPU load,
memory usage, and disk I/O. This visibility helps you confirm that the new node is functioning
correctly and contributing to workload distribution as expected.

Maintenance actions such as draining or rebooting the node are also available from the same
interface, making it easy to manage the node lifecycle after provisioning.

Cluster Management

Clusters can be designed for high availability or role-based workloads, where certain nodes may
take on leadership or coordination responsibilities. In these scenarios, promoting a node is a key
administrative task. It allows you to change the role of a node. While not always needed in basic
setups, node promotion becomes essential in distributed systems, replicated databases, or services
requiring failover control.

Promoting a node is typically performed in clusters where role-based architecture is used. In high-
availability setups, some nodes may act as leaders while others serve as followers or replicas. If a
leader node becomes unavailable or needs to be replaced, you can promote another node to take
over its responsibilities and maintain continuity of service.

Node promotion is also useful when scaling out and rebalancing responsibilities across a larger
cluster. For example, promoting a node to handle scheduling, state tracking, or replication
leadership can reduce bottlenecks and improve responsiveness. In cases involving database
clusters or consensus-driven systems, promotion ensures a clear and controlled transition of
leadership without relying solely on automatic failover mechanisms.

To promote a node, start by accessing the Clusters section in the Elestio dashboard. Choose the
cluster containing the node you want to promote. Inside the cluster view, navigate to the Nodes
 tab to see the full list of nodes, including their current roles, health status, and resource
usage. Locate the node that you want to promote and open its action menu. From here, select the
“Promote Node” option.

Promoting a Node

When to Promote a Node?

Promote a Node in Elestio

https://dash.elest.io/

You may be prompted to confirm the action, depending on the configuration and current role of the
node. This confirmation helps prevent unintended role changes that could affect cluster behavior.

Once confirmed, Elestio will initiate the promotion process. This involves reconfiguring the cluster’s
internal coordination state to acknowledge the new role of the promoted node. Depending on the
service architecture and the software running on the cluster, this may involve reassigning
leadership, updating replication targets, or shifting service orchestration responsibilities.

After promotion is complete, the node’s updated role will be reflected in the dashboard. At this
point, it will begin operating with the responsibilities assigned to its new status. You can monitor its
activity, inspect logs, and validate that workloads are being handled as expected.

Before promoting a node, ensure that it meets the necessary resource requirements and is in a
stable, healthy state. Promoting a node that is under high load or experiencing performance issues
can lead to service degradation. It’s also important to consider replication and data

Considerations for Promotion

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-04-56-pm-copy-2.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/fHsimage.png

synchronization, especially in clusters where stateful components like databases are in use.

Promotion is a safe and reversible operation, but it should be done with awareness of your
workload architecture. If your system relies on specific leader election mechanisms, promoting a
node should follow the design patterns supported by those systems.

Cluster Management

Over time, infrastructure needs change. You may scale down a cluster after peak load,
decommission outdated resources, or remove a node that is no longer needed for cost, isolation, or
maintenance reasons. Removing a node from a cluster is a safe and structured process designed to
avoid disruption. The dashboard provides an accessible interface for performing this task while
preserving workload stability.

Node removal is typically part of resource optimization or cluster reconfiguration. You might
remove a node when reducing costs in a staging environment, when redistributing workloads
across fewer or more efficient machines, or when phasing out a node for maintenance or
retirement.

Another common scenario is infrastructure rebalancing, where workloads are shifted to newer
nodes with better specs or different regions. Removing an idle or underutilized node can simplify
management and reduce noise in your monitoring stack. It also improves scheduling efficiency by
removing unneeded targets from the orchestration engine.

In high-availability clusters, node removal may be preceded by data migration or role reassignment
(such as promoting a replica). Proper planning helps maintain system health while reducing
reliance on unnecessary compute resources.

To begin the removal process, open the Elestio dashboard and navigate to the Clusters section.
Select the cluster that contains the node you want to remove. From within the cluster view, open
the Nodes tab to access the list of active nodes and their statuses.

Find the node you want to delete from the list. If the node is currently running services, ensure that
those workloads can be safely rescheduled to other nodes or are no longer needed. Since Elestio
does not have a built-in drain option, any workload redistribution needs to be handled manually,
either by adjusting deployments or verifying that redundant nodes are available. Once the node is
drained and idle, open the action menu for that node and select “Delete Node”.

Removing a Node

Why Remove a Node?

Remove a Node

https://dash.elest.io/

The dashboard may prompt you to confirm the operation. After confirmation, Elestio will begin the
decommissioning process. This includes detaching the node from the cluster, cleaning up any
residual state, and terminating the associated virtual machine.

Once the operation completes, the node will no longer appear in the cluster’s node list, and its
resources will be released.

Before removing a node in Elestio, it’s important to review the services and workloads currently
running on that node. Since Elestio does not automatically redistribute or migrate workloads during
node removal, you should ensure that critical services are either no longer in use or can be

Considerations for Safe Node
Removal

https://docs.elest.io/uploads/images/gallery/2025-05/4WYscreenshot-2025-05-15-at-1-04-56-pm-copy-2.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/jerimage.png

manually rescheduled to other nodes in the cluster. This is particularly important in multi-node
environments running stateful applications, databases, or services with specific affinity rules.

You should also verify that your cluster will have sufficient capacity after the node is removed. If
the deleted node was handling a significant portion of traffic or compute load, removing it without
replacement may lead to performance degradation or service interruption. In high-availability
clusters, ensure that quorum-based components or replicas are not depending on the node
targeted for deletion. Additionally, confirm that the node is not playing a special role such as
holding primary data or acting as a manually promoted leader before removal. If necessary,
reconfigure or promote another node prior to deletion to maintain cluster integrity.

Cluster Management

Reliable backups are essential for data resilience, recovery, and business continuity. Elestio
provides built-in support for managing backups across all supported services, ensuring that your
data is protected against accidental loss, corruption, or infrastructure failure. The platform includes
an automated backup system with configurable retention policies and a straightforward restore
process, all accessible from the dashboard. Whether you’re operating a production database or a
test environment, understanding how backups and restores work in Elestio is critical for
maintaining service reliability.

Elestio provides multiple backup mechanisms designed to support various recovery and
compliance needs. Backups are created automatically for most supported services, with consistent
intervals and secure storage in managed infrastructure. These backups are performed in the
background to ensure minimal performance impact and no downtime during the snapshot process.
Each backup is timestamped, versioned, and stored securely with encryption. You can access your
full backup history for any given service through the dashboard and select any version for
restoration.

You can utilize different backup options depending on your preferences and operational
requirements. Elestio supports manual local backups for on-demand recovery points,
automated snapshots that capture the state of the service at fixed intervals, and automated
remote backups using Borg, which securely stores backups on external storage volumes
managed by Elestio. In addition, you can configure automated external backups to S3-
compatible storage, allowing you to maintain full control over long-term retention and
geographic storage preferences.

Backups and Restores

Cluster Backups

Restoring a backup in Elestio is a user-initiated operation, available directly from the service
dashboard. Once you’re in the dashboard, select the service you’d like to restore. Navigate to the
Backups section, where you’ll find a list of all available backups along with their creation
timestamps.

To initiate a restore, choose the desired backup version and click on the “Restore” option. You will
be prompted to confirm the operation. Depending on the type of service, the restore can either
overwrite the current state or recreate the service as a new instance from the selected backup.

The restore process takes a few minutes, depending on the size of the backup and the service
type. Once completed, the restored service is immediately accessible. In the case of databases,
you can validate the restore by connecting to the database and inspecting the restored data.

Restoring from a Backup

https://docs.elest.io/uploads/images/gallery/2025-05/zpYimage.png
https://docs.elest.io/uploads/images/gallery/2025-05/ILIimage.png

Before restoring a backup, it’s important to understand the impact on your current data.
Restores may overwrite existing service state, so if you need to preserve the current
environment, consider creating a manual backup before initiating the restore. In critical
environments, restoring to a new instance and validating the data before replacing the
original is a safer approach.
Keep in mind that restore operations are not instantaneous and may temporarily affect
service availability. It’s best to plan restores during maintenance windows or periods of
low traffic, especially in production environments.
For services with high-frequency data changes, be aware of the backup schedule and
retention policy. Elestio’s default intervals may not capture every change, so for high-
volume databases, consider exporting incremental backups manually or using continuous
replication where supported.

Elestio provides visibility into your backup history directly through the dashboard. You can monitor
the status, timestamps, and success/failure of backup jobs. In case of errors or failed backups,
the dashboard will display alerts, allowing you to take corrective actions or contact support if
necessary.

It’s good practice to periodically verify that backups are being generated and that restore points
are recent and complete. This ensures you’re prepared for unexpected failures and that recovery
options remain reliable.

Considerations for Backup &
Restore

Monitoring Backup Health

Cluster Management

In distributed systems, consistency and synchronization between nodes are critical to ensure that
services behave reliably and that data remains accurate across the cluster. Elestio provides built-in
mechanisms to detect and resolve inconsistencies across nodes using a feature called Cluster
Resynchronization. This functionality ensures that node-level configurations, data replication,
and service states are properly aligned, especially after issues like node recovery, temporary
network splits, or service restarts.

Resynchronization is typically required when secondary nodes in a cluster are no longer consistent
with the primary node. This can happen due to temporary network failures, node restarts,
replication lag, or partial service interruptions. In such cases, secondary nodes may fall behind or
store incomplete datasets, which could lead to incorrect behavior if a failover occurs or if read
operations are directed to those nodes. Unresolved inconsistencies can result in data divergence,
serving outdated content, or failing health checks in load-balanced environments. Performing a
resynchronization ensures that all secondary nodes are forcibly aligned with the current state of
the primary node, restoring a clean and unified cluster state.

It may also be necessary to perform a resync after restoring a service from backup, during
infrastructure migrations, or after recovering a previously offline node. In each of these cases,
resynchronization acts as a corrective mechanism to ensure that every node is operating with the
same configuration and dataset, reducing the risk of drift and maintaining data integrity across the
cluster.

To perform a resynchronization, start by accessing the Elestio dashboard and navigating to the
Clusters section. Select the cluster where synchronization is needed. On the Cluster Overview
 page, scroll down slightly until you find the “Resync Cluster” option. This option is visible as part
of the cluster controls and is available only in clusters with multiple nodes and a defined primary
node.

Cluster Resynchronization

Need for Cluster Resynchronization

Cluster Resynchronization

https://dash.elest.io/

Clicking the Resync button opens a confirmation dialog. The message clearly explains that this
action will initiate a request to resynchronize all secondary nodes. During the resync process,
existing data on all secondary nodes will be erased and replaced with a copy of the data
from the primary node. This operation ensures full consistency across the cluster but should be
executed with caution, especially if recent changes exist on any of the secondaries that haven’t yet
been replicated.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-13-16-pm.jpg

You will receive an email notification once the resynchronization is complete. During this process,
Elestio manages the replication safely, but depending on the size of the data, the operation may
take a few minutes. It’s advised to avoid making further changes to the cluster while the resync is
in progress.

Before triggering a resync, it’s important to verify that the primary node holds the desired
state and that the secondary nodes do not contain any critical unsynced data. Since the
resync overwrites the secondary nodes completely, any local changes on those nodes
will be lost.
This action is best used when you’re confident that the primary node is healthy, current,
and stable. Avoid initiating a resync if the primary has recently experienced errors or data
issues. Additionally, consider performing this operation during a low-traffic period, as
synchronization may temporarily impact performance depending on the data volume.
If your application requires high consistency guarantees, it’s recommended to monitor
your cluster closely during and after the resync to confirm that services are functioning
correctly and that the replication process completed successfully.

Considerations Before
Resynchronizing

https://docs.elest.io/uploads/images/gallery/2025-05/QoJimage.png

Cluster Management

When managing production-grade services, the ability to perform reliable and repeatable database
migrations is critical. Whether you’re applying schema changes, updating seed data, or managing
version-controlled transitions, Elestio provides a built-in mechanism to execute migrations safely
from the dashboard. This functionality is especially relevant when running containerized database
services like Redis, or similar within a managed cluster.

Database migrations are commonly required when updating your application’s data model or
deploying new features. Schema updates such as adding columns, modifying data types, creating
indexes, or introducing new tables need to be synchronized with the deployment lifecycle of your
application code.

Migrations may also be needed during version upgrades to introduce structural or configuration
changes required by newer database engine versions. In some cases, teams use migrations to
apply baseline datasets, adjust permissions, or clean up legacy objects. Running these changes
through a controlled migration system ensures consistency across environments and helps avoid
untracked manual changes.

To run a database migration in Elestio, start by logging into the Elestio dashboard and navigating
to the Clusters section. Select the cluster that contains the target database service. From the
Cluster Overview page, scroll down until you find the “Migration” option.

Database Migrations

Need for Migrations

Running Database Migration

https://dash.elest.io/

Clicking this option will open the migration workflow, which follows a three-step process:
Configure, Validation, and Migration. In the Configure step, Elestio provides a migration
configuration guide specific to the database type, such as Redis. At this point, you must ensure
that your target service has sufficient disk space to complete the migration. If there is not enough
storage available, the migration may fail midway, so it’s strongly recommended to review storage
utilization beforehand.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-15-18-pm.jpg

Once configuration prerequisites are met, you can proceed to the Validation step. Elestio will
check the secondary database details you have provided for the migration.

https://docs.elest.io/uploads/images/gallery/2025-05/rDnimage.png
https://docs.elest.io/uploads/images/gallery/2025-04/Ihkimage.png

If the validation passes, the final Migration step will become active. You can then initiate the
migration process. Elestio will handle the actual data transfer, schema replication, and state
synchronization internally. The progress is tracked, and once completed, the migrated database
will be fully operational on the target service.

Before running any migration, it’s important to validate the script or changes in a staging
environment. Since migrations may involve irreversible changes—such as dropping
columns, altering constraints, or modifying data—careful review and version control are
essential.
In production environments, plan migrations during maintenance windows or low-traffic
periods to minimize the impact of any schema locks or temporary unavailability. If you’re
using replication or high-availability setups, confirm that the migration is compatible with
your architecture and will not disrupt synchronization between primary and secondary
nodes.
You should also ensure that proper backups are in place before applying structural
changes. In Elestio, the backup feature can be used to create a restore point that allows
rollback in case the migration introduces issues.

Considerations Before Running
Migrations

Cluster Management

When a cluster is no longer needed whether it was created for testing, staging, or an obsolete
workload—deleting it helps free up resources and maintain a clean infrastructure footprint. Elestio
provides a straightforward and secure way to delete entire clusters directly from the dashboard.
This action permanently removes the associated services, data, and compute resources tied to the
cluster.

Deleting a cluster is a final step often performed when decommissioning an environment. This
could include shutting down a test setup, replacing infrastructure during migration, or retiring an
unused production instance. In some cases, users also delete and recreate clusters as part of major
version upgrades or architectural changes. It is essential to confirm that all data and services tied
to the cluster are no longer required or have been backed up or migrated before proceeding. Since
cluster deletion is irreversible, any services, volumes, and backups associated with the cluster will
be permanently removed.

To delete a cluster, log in to the Elestio dashboard and navigate to the Clusters section. From the
list of clusters, select the one you want to remove. Inside the selected cluster, you’ll find a
navigation bar at the top of the page. One of the available options in this navigation bar is
“Delete Cluster.”

Delete a Cluster

When to Delete a Cluster

Delete a Cluster

https://dash.elest.io/

Clicking this opens a confirmation dialog that outlines the impact of deletion. It will clearly state
that deleting the cluster will permanently remove all associated services, storage, and
configurations. By acknowledging a warning or typing in the cluster name, depending on the
service type. Once confirmed, Elestio will initiate the deletion process, which includes tearing down
all resources associated with the cluster. This typically completes within a few minutes, after which
the cluster will no longer appear in your dashboard.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-19-37-pm.jpg

Deleting a cluster also terminates any linked domains, volumes, monitoring configurations, and
scheduled backups. These cannot be recovered once deletion is complete, so plan accordingly
before confirming the action. If the cluster was used for production workloads, consider archiving
data to external storage (e.g., S3) or exporting final snapshots for compliance and recovery
purposes.

Before deleting a cluster, verify that:

All required data has been backed up externally (e.g., downloaded dumps or exports).
Any active services or dependencies tied to the cluster have been reconfigured or shut
down.
Access credentials, logs, or stored configuration settings have been retrieved if needed for
auditing or migration.

Considerations Before Deleting

https://docs.elest.io/uploads/images/gallery/2025-05/LbPimage.png

Cluster Management

Securing access to services is a fundamental part of managing cloud infrastructure. One of the
most effective ways to reduce unauthorized access is by restricting connectivity to a defined set of
IP addresses. Elestio supports IP-based access control through its dashboard, allowing you to
explicitly define which IPs or IP ranges are allowed to interact with your services. This is particularly
useful when exposing databases, APIs, or web services over public endpoints.

Restricting access by IP provides a first layer of network-level protection. Instead of relying solely
on application-layer authentication, you can control who is allowed to even initiate a connection to
your service. This approach reduces the surface area for attacks such as brute-force login
attempts, automated scanning, or unauthorized probing.

Common use cases include:

Limiting access to production databases from known office networks or VPNs.
Allowing only CI/CD pipelines or monitoring tools with static IPs to connect.
Restricting admin dashboards or internal tools to internal teams.

By defining access rules at the infrastructure level, you gain more control over who can reach your
services, regardless of their authentication or API access status.

To restrict access by IP in Elestio, start by logging into the Elestio dashboard and navigating to the
Clusters section. Select the cluster that hosts the service you want to protect. Once inside the
Cluster Overview page, locate the Security section.

Restricting Access by IP

Need to Restrict Access by IP

Restrict Access by IP

https://dash.elest.io/

Within this section, you’ll find a setting labeled “Limit access per IP”. This is where you can
define which IP addresses or CIDR ranges are permitted to access the services running in the
cluster. You can add a specific IPv4 or IPv6 address (e.g., 203.0.113.5) or a subnet in CIDR notation
(e.g., 203.0.113.0/24) to allow access from a range of IPs.

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-15-at-1-21-44-pm.jpg

After entering the necessary IP addresses, save the configuration. The changes will apply to all
services running inside the cluster, and only the defined IPs will be allowed to establish network
connections. All other incoming requests from unlisted IPs will be blocked at the infrastructure
level.

When applying IP restrictions, it’s important to avoid locking yourself out. Always double-
check that your own IP address is included in the allowlist before applying rules, especially
when working on remote infrastructure.
For users on dynamic IPs (e.g., home broadband connections), consider using a VPN or a
static jump host that you can reliably allowlist. Similarly, if your services are accessed
through cloud-based tools, make sure to verify their IP ranges and update your rules
accordingly when those IPs change.
In multi-team environments, document and review IP access policies regularly to avoid
stale rules or overly permissive configurations. Combine IP restrictions with secure
authentication and encrypted connections (such as HTTPS or SSL for databases) for
layered security.

Considerations When Using IP
Restrictions

https://docs.elest.io/uploads/images/gallery/2025-04/screenshot-2025-04-24-at-3-39-53-pm.jpg

