
As your Redis data grows especially when using persistence modes like RDB or AOF it’s important
to track how storage is being used. Unchecked growth can lead to full disks, failed writes, longer
startup times, and backup complications. While Elestio handles the hosting, Redis storage tuning
and cleanup remain your responsibility. This guide explains how to inspect keyspace size, analyze
persistence files, detect unnecessary memory usage, and optimize Redis storage under a Docker
Compose setup.

Redis doesn’t have schemas or tables, but its memory and disk footprint can be analyzed using
built-in commands.

From your terminal, connect to the container:

This displays current memory stats. Look for the used_memory_human and maxmemory fields to
understand real usage versus limits.

Output looks like:

This tells you how many keys exist, how many have TTLs set, and their average lifespan. If most
keys never expire, your dataset may grow indefinitely.

Inside the Redis container, persistent files live under /data:

Checking Database Size and
Related Issues

Checking Keyspace Usage and Persistence
File Size

Check total memory used by Redis

docker-compose exec redis redis-cli INFO memory

Inspect key count and usage by database

docker-compose exec redis redis-cli INFO keyspace

db0:keys=1250,expires=1200,avg_ttl=34560000

View on-disk file sizes

Check the sizes of:

dump.rdb (if RDB is enabled)
appendonly.aof (if AOF is enabled)

These files represent your on-disk dataset and can become large if not managed

Redis may accumulate unnecessary memory usage due to expired keys not yet evicted, inefficient
data structures, or infrequent AOF rewrites.

Redis doesn’t provide per-key memory stats natively, but you can sample keys and estimate
memory usage:

This scans a portion of the keyspace and reports the largest keys by type. If a single key is taking
excessive space (e.g., a massive list or set), it may need to be split or purged.

Use the MEMORY USAGE command to analyze specific keys:

You can script this to scan high-traffic prefixes and locate heavy keys.

Redis may fragment memory, reducing efficiency:

A mem_fragmentation_ratio significantly above 1.2 suggests internal fragmentation.

Once you’ve identified memory-heavy keys or large persistence files, Redis offers several tools to
optimize space usage.

docker-compose exec redis sh -c "ls -lh /data"

Detecting Bloat and Unused Space

Estimate memory usage by key pattern

docker-compose exec redis redis-cli --bigkeys

Analyze memory per key (sample)

docker-compose exec redis redis-cli MEMORY USAGE some:key

Check fragmentation

docker-compose exec redis redis-cli INFO memory | grep fragmentation

Optimizing and Reclaiming Redis Storage

If AOF is enabled, it grows over time. To reduce its size:

This background process creates a smaller version of the AOF file without data loss.

Manually delete stale keys or add TTLs to ensure automatic cleanup:

Or set expiration:

Use patterns to delete multiple keys (carefully!):

To enforce automatic eviction when nearing memory limits, In redis.conf (mounted via Docker
volume):

Restart the container to apply changes. This keeps Redis performant under constrained storage.

Redis typically writes to /data in the container (mapped from a host volume). Check usage from the
host:

Trigger AOF rewrite (compacts the appendonly file)

docker-compose exec redis redis-cli BGREWRITEAOF

Delete or expire unused keys

docker-compose exec redis redis-cli DEL obsolete:key

docker-compose exec redis redis-cli EXPIRE session:1234 3600

docker-compose exec redis redis-cli --scan --pattern "temp:*" | xargs -n 100 redis-cli DEL

Avoid FLUSHALL or bulk deletes in production unless absolutely necessary.“
Tune maxmemory and eviction policy

maxmemory 512mb

maxmemory-policy allkeys-lru

Managing and Optimizing Redis Files on
Disk

Monitor data directory inside Docker

List all Docker volumes:

Check Redis volume size (replace <volume_name>):

RDB snapshots (e.g. dump.rdb) are stored in /data. Clean up old or unneeded ones manually:

Ensure backups are offloaded to external storage and not stored alongside the live database.

Use TTLs liberally: Set expiration on all temporary/session keys to prevent unbounded
growth.
Avoid storing large binary blobs: Store images, files, or videos outside Redis. Use
Redis for metadata only.
Rotate logs: If Redis logs to file (e.g., /var/log/redis.log), rotate them via Docker logging
options or tools like logrotate.
In docker-compose.yml

Use efficient data structures: Prefer HASH or SET over storing large JSON blobs as
strings.
Monitor AOF size and compaction frequency: If AOF is growing too fast, adjust these
in redis.conf:

docker system df

docker volume ls

sudo du -sh /var/lib/docker/volumes/<volume_name>/_data

Clean up RDB snapshots and old backups

docker-compose exec redis rm /data/dump-<timestamp>.rdb

Best Practices for Redis Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

Revision #1
Created 20 May 2025 11:38:57 by kaiwalya
Updated 20 May 2025 12:08:28 by kaiwalya

Archive analytics data: For time-series or metrics data, periodically move old entries to
cold storage.
Back up to offsite storage: Avoid keeping snapshots on the same disk or volume. Use
Elestio’s backup integrations to store them in cloud or remote storage.

