
Long-running commands in Redis can block the single-threaded event loop, causing delayed
responses or complete unresponsiveness in production environments like Elestio. Monitoring and
handling these commands is critical for maintaining performance and reliability. This guide explains
how to detect, analyze, and terminate blocking or slow commands in Redis using terminal tools,
Docker Compose setups, and Redis’s built-in logging features. It also includes prevention strategies
to avoid performance bottlenecks in the future.

Redis does not support multitasking like traditional SQL databases, so any command that takes too
long blocks the entire server. To inspect active commands and see which clients may be running
long operations, use the Redis CLI.

This command shows all connected clients, including their IP address, command in progress (cmd),
idle time, and total duration. Focus on clients with high idle or age values while still actively
running commands.

To observe commands in real time:

This outputs every operation in real time. It’s useful for spotting blocking commands but should be
used only in staging or during short troubleshooting sessions, as it consumes significant CPU.

Redis provides tools to close problematic connections or interrupt Lua scripts that run for too long.

Detect and terminate long-
running queries

Monitoring Long-Running Commands

Check active clients and their current commands

redis-cli -h <host> -p <port> -a <password> CLIENT LIST

Detect current command load using MONITOR

redis-cli -a <password> MONITOR

Terminating Problematic Commands Safely

Kill a specific client connection

If a client is running a blocking or long operation, you can terminate its connection using its client
ID:

This will drop the connection and stop any running command associated with that client.

If a Lua script is stuck or taking too long:

This stops the currently executing script. If the script has modified data, Redis will return an error
to avoid leaving the database in an inconsistent state.

If your Redis service is running inside a Docker Compose setup on Elestio, you’ll need to access the
container before you can inspect or kill commands.

Inside the container, connect to Redis using:

Then, use CLIENT LIST, SCRIPT KILL, or CLIENT KILL just like from the host.

Redis includes a built-in slowlog that logs commands that exceed a specific execution threshold.

CLIENT KILL ID <id>

You can find the <id> from the CLIENT LIST command.“

Stop a long-running Lua script

SCRIPT KILL

If the script is not killable (e.g., during a write operation), Redis will return an
error. Always use SCRIPT KILL cautiously.“

Managing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Using the Redis Slowlog Feature

Enable and configure slowlog in redis.conf

Update these settings in redis.conf, or set them at runtime:

This shows the 10 most recent slow commands with their timestamp, execution time, and
command details.

Use this to reset the log after reviewing or during maintenance.

Redis includes latency tracking features to help you understand when and why delays occur.

This gives you a summary of observed latency spikes and their causes (e.g., command execution,
AOF rewrite, background saves).

You can replace command with any tracked event like fork, aof-write, or expire-cycle.

Preventing long-running commands is critical since Redis handles all operations on a single thread.

slowlog-log-slower-than 10000 # Log commands slower than 10ms

slowlog-max-len 128 # Keep 128 slow entries

CONFIG SET slowlog-log-slower-than 10000

CONFIG SET slowlog-max-len 128

View the slowlog

SLOWLOG GET 10

Clear the slowlog

SLOWLOG RESET

Analyzing Command Latency Over Time

Generate a diagnostic latency report

LATENCY DOCTOR

View detailed latency history by event

LATENCY HISTORY command

Best Practices to Prevent Long-Running
Commands

Revision #1
Created 20 May 2025 10:26:37 by kaiwalya
Updated 20 May 2025 10:50:03 by kaiwalya

Avoid full key scans: Never use KEYS * or SMEMBERS on large sets in production. Use
SCAN instead for incremental iteration.
Limit Lua script duration: Break complex scripts into smaller steps and test for
performance in staging.
Use pipelining: Send multiple commands in one round-trip to reduce overall time spent
per operation.
Limit list and set access: Use ranges or batch operations for large data structures.

Enable eviction policies: To avoid OOM errors that can freeze Redis, enable LRU or LFU
eviction:

Monitor regularly: Use CLIENT LIST, SLOWLOG, and LATENCY in combination to detect
problematic patterns early.

LRANGE mylist 0 99 # Good

LRANGE mylist 0 -1 # Risky on large lists

CONFIG SET maxmemory-policy allkeys-lru

