
Slow commands can impact Redis performance, especially under high load or when poorly
optimized operations are used. Whether you’re using Redis on Elestio through the dashboard,
accessing it inside a Docker Compose container, or connecting via CLI tools, Redis provides native
tooling to monitor and troubleshoot performance issues. This guide explains how to capture slow
operations using the Redis slow log, analyze command latency, and optimize performance through
configuration and query changes.

Redis includes a built-in slowlog feature that tracks commands exceeding a configured execution
time threshold. This is useful for identifying operations that may block the server or cause
application latency.

Use the Redis CLI to connect to your instance:

Check the threshold that defines a “slow” command (in microseconds):

The default is 10000 (10 milliseconds). Any command exceeding this will be logged.

To inspect recent slow commands:

Identifying Slow Queries

Inspecting Slow Commands from the
Terminal

Connect to your Redis instance via terminal

redis-cli -h <host> -p <port> -a <password>

Replace <host>, <port>, and <password> with your Redis credentials from the
Elestio dashboard.“

View the slowlog threshold

CONFIG GET slowlog-log-slower-than

View the slow query log

SLOWLOG GET 10

This shows the 10 most recent slow commands. Each entry includes the execution time,
timestamp, and command details.

If your Redis instance is deployed with Docker Compose, slow command inspection can be done
inside the running container environment.

Open a shell inside the container:

Then connect to Redis using:

Make sure the REDIS_PASSWORD environment variable is defined in your Docker Compose file.

You can view or change the slowlog threshold dynamically:

Set a lower threshold (e.g., 5000) temporarily to capture more entries during testing.

The number of slowlog entries stored is configurable:

To increase the history size:

This allows storing more slow command logs for better visibility.

Redis also includes latency monitoring tools that track spikes and identify root causes.

Analyzing Inside Docker Compose

Access the Redis container

docker-compose exec redis bash

redis-cli -a $REDIS_PASSWORD

Check and adjust the slowlog threshold

CONFIG SET slowlog-log-slower-than 10000

Check how many entries are stored

CONFIG GET slowlog-max-len

CONFIG SET slowlog-max-len 256

Using the Latency Monitoring Feature

Latency tracking is often enabled by default. You can manually inspect events with:

This command gives a report of latency spikes and their possible causes (e.g., slow commands,
forks, or blocked I/O).

To inspect latency for a specific category:

Common tracked events include command, fork, aof-write, etc.

Redis performance can degrade due to specific patterns of usage, large keys, blocking commands,
or non-optimized pipelines.

Large key operations: Commands like LRANGE, SMEMBERS, HGETALL on large datasets.
Blocking operations: Commands like BLPOP, BRPOP, or Lua scripts with long loops.
Forking overhead: Caused by background saves or AOF rewrites.

Use SCAN instead of KEYS for iteration.
Limit result sizes from large structures (e.g., use LRANGE 0 99 instead of full LRANGE).
Use pipelining to batch requests and reduce round trips.
Avoid multi-key operations when possible in a clustered setup.

Performance tuning can also involve modifying Redis settings related to memory, persistence, and
networking.

Update these settings via redis.conf or dynamically with CONFIG SET:

Enable latency monitoring

LATENCY DOCTOR

View latency history for specific events

LATENCY HISTORY command

Understanding and Resolving Common
Bottlenecks

Common causes of slow commands:

Best practices to avoid slow commands:

Optimizing with Configuration Changes

Revision #3
Created 20 May 2025 10:24:38 by kaiwalya
Updated 20 May 2025 10:28:39 by kaiwalya

Use caution with persistence settings. Disabling RDB or AOF improves performance but removes
durability.

CONFIG SET maxmemory-policy allkeys-lru

CONFIG SET save ""

