
Redis supports modules to extend core functionality with new data types, commands, or
algorithms. These modules behave like plugins in other systems and are loaded at server startup.
Examples include RedisBloom, RedisTimeSeries, RedisJSON, and RedisSearch.

In Elestio-hosted Redis instances or any Docker Compose-based setup, modules can be loaded by
specifying them in the service configuration. This guide walks through how to install, load, and
manage Redis modules using Docker Compose, along with common issues and best practices.

Redis modules are typically compiled as shared object (.so) files and must be loaded at server
startup using the --loadmodule option. These module files are mounted into the container and
referenced from within the container’s file system. To use a module like RedisBloom in a Docker
Compose setup:

Mount the module file into the container and load it:

Here:

./modules/redisbloom.so is the local path on your host machine.
/data/redisbloom.so is the path inside the container.

Installing and Updating an
Extension

Installing and Enabling Redis
Modules

Update docker-compose.yml

services:

 redis:

 image: redis/redis-stack-server:latest

 volumes:

 - ./modules/redisbloom.so:/data/redisbloom.so

 command: ["redis-server", "--loadmodule", "/data/redisbloom.so"]

 ports:

 - "6379:6379"

https://oss.redis.com/redisbloom/
https://oss.redis.com/redistimeseries/
https://oss.redis.com/redisjson/
https://oss.redis.com/redisearch/

Make sure the .so file exists in the specified directory before running Docker Compose.

After updating the Compose file, restart the service:

This will reload Redis with the specified module.

Once Redis is running, connect to it using redis-cli:

Run the following command:

Expected output:

This confirms the module (in this case, bf for RedisBloom) is loaded and active.

Redis modules must match the Redis server version and platform. You can verify compatibility
through the module’s documentation or by testing it in a local development setup before using it in
production.

To inspect module-related details:

To verify the correct Redis image is being used:

Restart the Redis Service

docker-compose down

docker-compose up -d

Verify the Module is Loaded

docker-compose exec redis redis-cli -a <yourPassword>

MODULE LIST

1) 1) "name"

 2) "bf"

 3) "ver"

 4) (integer) 20207

Checking Module Availability &
Compatibility

INFO MODULES

If a module fails to load, check the container logs:

This often reveals missing paths or compatibility issues.

Unlike MySQL, Redis does not support dynamic unloading of modules once loaded. To update or
remove a module:

1. Stop the container:

2. Edit docker-compose.yml:

Change the .so file path if updating the module.
Remove the --loadmodule line if unloading the module.

3. Restart the container:

Always test updated modules in staging before applying to production.

Issue Cause Resolution

Redis fails to start Incorrect module path or
incompatible binary

Check docker-compose logs redis and verify the .so
path and architecture

MODULE command not
recognized

Using a Redis image without
module support

Use an image like redis/redis-stack-server which
supports modules

docker-compose exec redis redis-server --version

docker-compose logs redis

Updating or Unloading Modules

docker-compose down

docker-compose up -d

Troubleshooting Common Module
Issues

Revision #1
Created 20 May 2025 07:06:41 by kaiwalya
Updated 20 May 2025 09:07:38 by kaiwalya

Issue Cause Resolution

“Can’t open .so file” Volume not mounted or
permission denied

Ensure the .so file exists locally and is readable by
Docker

Module not appearing in
MODULE LIST

Module failed to load silently Double-check command and container logs

Commands from the module
not recognized

Module not loaded properly or
incompatible

Validate Redis version and module compatibility

Redis modules execute native code with the same privileges as Redis itself. Only load trusted,
vetted modules from official sources. Avoid uploading or executing arbitrary .so files from unknown
authors. In multi-tenant or exposed environments, module misuse could lead to instability or
security risks. Ensure the redis user inside the container has limited privileges, and module
directories have appropriate permissions.

Security Considerations

