
Creating a Database
Upgrading to a Major Version
Installing or Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk Issues
Checking Database Size and Related Issues

How-To Guides

TimescaleDB allows you to create databases using different methods, including the PostgreSQL
interactive shell (psql), Docker (assuming TimescaleDB is running inside a container), and the
command-line interface (createdb). This guide explains each method step-by-step, covering
required permissions, best practices, and troubleshooting common issues.

TimescaleDB is a database system that stores and manages structured data efficiently. The psql
tool is an interactive command-line interface (CLI) that allows users to execute SQL commands
directly on a TimescaleDB database. Follow these steps to create a database:

Open terminal on your local system, and if TimescaleDB is installed locally, connect using the
following command. If not installed, install from official website:

For a remote database, use:

Replace HOST with the database server address, USER with the TimescaleDB username, and
DATABASE with an existing database name.

Inside the psql shell, run:

The default settings will apply unless specified otherwise. To customize the encoding and collation,
use:

Creating a Database

Creating Using psql CLI

Connect to TimescaleDB

psql -U postgres

psql -h HOST -U USER -d DATABASE

Create a New Database

CREATE DATABASE mydatabase;

CREATE DATABASE mydatabase ENCODING 'UTF8' LC_COLLATE 'en_US.UTF-8' LC_CTYPE 'en_US.UTF-8'

TEMPLATE template0;

https://www.postgresql.org/download/

Docker is a tool that helps run applications in isolated environments called containers. A
TimescaleDB container provides a self-contained database instance that can be quickly deployed
and managed. If you are running TimescaleDB inside a Docker container, follow these steps:

Head over to your deployed TimescaleDB service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

Instead of pulling an image or running the container manually, use Docker Compose to interact
with your running container. As you are using Elestio, it will already be a Docker compose:

Creating Database in Docker

Access Elestio Terminal

cd /opt/app/

Access the TimescaleDB Container Shell

https://docs.elest.io/uploads/images/gallery/2025-05/Yujimage.png

This opens a shell session inside the running TimescaleDB container.

Once inside the container shell, if environment variables like POSTGRES_USER and POSTGRES_DB are
already set in the stack, you can use them directly:

Or use the default one:

Now, to create a database, use the following command. This command tells TimescaleDB to create
a new logical database called mydatabase . By default, it inherits settings like encoding and collation
from the template database (template1), unless specified otherwise.

You can quickly list the database you just created using the following command

The createdb command simplifies database creation from the terminal without using psql .

Check the TimescaleDB service status, this ensures that the TimescaleDB instance is running on
your local instance:

If not running, start it:

docker-compose exec postgres bash

Use Environment Variables to Connect via psql

psql -U "$TIMESCALE_USER" -d "$TIMESCALE_DB"

psql -U postgres

Create Database

CREATE DATABASE mydatabase;

/l

Creating Using createdb CLI

Ensure TimescaleDB is Running

sudo systemctl status timescale

sudo systemctl start timescale

Now, you can create a simple database using the following command:

To specify encoding and collation:

List all databases using the following commands, as it will list all the databases available under
your TimescaleDB:

Next, you can easily connect with the database using the psql command and start working on it.

Creating a database requires the CREATEDB privilege. By default, the postgres user has this
privilege. To grant it to another user:

For restricted access, assign specific permissions:

Create a Database

createdb -U postgres mydatabase

createdb -U postgres --encoding=UTF8 --lc-collate=en_US.UTF-8 --lc-ctype=en_US.UTF-8

mydatabase

Verify Database Creation

psql -U postgres -l

Connect to the New Database

psql -U postgres -d mydatabase

Required Permissions for Database
Creation

ALTER USER username CREATEDB;

CREATE ROLE newuser WITH LOGIN PASSWORD 'securepassword';

GRANT CONNECT ON DATABASE mydatabase TO newuser;

GRANT USAGE ON SCHEMA public TO newuser;

GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO newuser;

Use Meaningful Names: Choosing clear and descriptive names for databases helps in
organization and maintenance. Avoid generic names like testdb or database1 , as they do
not indicate the database’s purpose. Instead, use names that reflect the type of data
stored, such as customer_data or sales_records . Meaningful names make it easier for
developers and administrators to understand the database’s function without extra
documentation.
Follow Naming Conventions: A standardized naming convention ensures consistency
across projects and simplifies database management. TimescaleDB is case-sensitive, so
using lowercase letters and underscores (e.g., order_details) is recommended to avoid
unnecessary complexities. Avoid spaces and special characters in names, as they require
additional quoting in SQL queries.
Restrict User Permissions: Granting only the necessary permissions improves
database security and reduces risks. By default, users should have the least privilege
required for their tasks, such as read-only access for reporting tools. Superuser or
administrative privileges should be limited to trusted users to prevent accidental or
malicious changes. Using roles and groups simplifies permission management and
ensures consistent access control.
Enable Backups: Regular backups ensure data recovery in case of accidental deletions,
hardware failures, or security breaches. TimescaleDB provides built-in tools like pg_dump
for single-database backups and pg_basebackup for full-instance backups. Automating
backups using cron jobs or scheduling them through a database management tool
reduces the risk of data loss.
Monitor Performance: Monitoring database performance helps identify bottlenecks,
optimize queries, and ensure efficient resource utilization. TimescaleDB provides system
views like pg_stat_activity and pg_stat_database to track query execution and database
usage. Analyzing slow queries using EXPLAIN ANALYZE helps in indexing and optimization.

Issue Possible Cause Solution

ERROR: permission denied to create
database

User lacks CREATEDB privileges Grant permission using ALTER USER
username CREATEDB;

Best Practices for Creating
Databases

SELECT datname, numbackends, xact_commit, blks_read FROM pg_stat_database;

Common Issues and
Troubleshooting

Issue Possible Cause Solution

ERROR: database "mydatabase" already
exists

Database name already taken Use a different name or drop the
existing one with DROP DATABASE
mydatabase;

FATAL: database "mydatabase" does
not exist

Attempting to connect to a non-
existent database

Verify creation using \l

psql: could not connect to server TimescaleDB is not running Start TimescaleDB with sudo
systemctl start timescale

ERROR: role "username" does not
exist

The specified user does not exist Create the user with CREATE ROLE
username WITH LOGIN PASSWORD
'password';

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to a Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the
database if needed. No manual commands are required, and the system handles most of the

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-13-at-3-05-24-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-13-at-3-06-35-pm.jpg

operational aspects in the background.

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-05/screenshot-2025-05-13-at-3-07-28-pm.jpg

TimescaleDB supports a growing range of PostgreSQL-compatible extensions that add extra
functionality to the core database system. Extensions like pg_trgm (for text search) and some UUID
utilities are used to extend native capabilities. However, not all PostgreSQL extensions are
supported, especially those requiring compiled C code like uuid-ossp or postgis, unless
TimescaleDB has explicitly implemented or emulated them. If you’re running TimescaleDB on
Elestio, many supported extensions can be enabled directly within your database. This guide
explains how to enable, manage, and troubleshoot extensions in an Elestio-hosted TimescaleDB
environment, with attention to compatibility concerns.

TimescaleDB extensions can be installed in each database individually. Most common extensions
are included in the TimescaleDB installation on Elestio. To enable an extension, you need to
connect to your database using a tool like psql.

Start by connecting to your TimescaleDB database. You can follow the detailed documentation as
provided here.

Once connected, you can enable an extension using the CREATE EXTENSION command. For
example, to enable the uuid-ossp extension:

To check which extensions are already installed in your current database, use the `\dx` command
within psql. If you want to see all available extensions on the server, use:

If the extension you need is not listed in the available extensions, it may not be installed on the
server.

Each TimescaleDB extension is built for a specific TimescaleDB version. Not all extensions are
compatible across major versions. Before upgrading TimescaleDB or deploying an extension, it is
important to check whether the extension is compatible with the version you are using.

Installing or Updating an
Extension

Installing and Enabling Extensions

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

SELECT * FROM pg_available_extensions ORDER BY name;

Checking Extension Compatibility

https://docs.elest.io/books/postgresql/page/connecting-with-psql

To check the installed version of an extension and the default version provided by the system, run:

If you are planning to upgrade your TimescaleDB version, it is recommended to deploy a new
instance with the target version and run the above query to see if the extension is available and
compatible. Some extensions may require specific builds for each version of TimescaleDB. After
upgrading your database, you may also need to update your extensions using:

This ensures the extension objects in the database match the new database version.

There are some common issues users may encounter when working with extensions. These usually
relate to missing files, permission problems, or version mismatches.

If you see an error like could not open extension control file, it means the extension is not installed
on the server. This usually happens when the extension is not included in the TimescaleDB
installation. If the error message says that the extension already exists, it means it has already
been installed in the database. You can confirm this with the \dx command or the query:

If you need to reinstall it, you can drop and recreate it. Be careful, as dropping an extension with
CASCADE may remove objects that depend on it:

Another common issue appears after upgrading TimescaleDB, where some functions related to the
extension stop working. This is often due to the extension not being updated. Running the following
command will usually fix this.

In some cases, you may get a permission denied error when trying to create an extension. This
means your database role does not have the required privileges. You will need to connect using a
superuser account like postgres, or request that Elestio enable the extension for you.

SELECT name, default_version, installed_version

FROM pg_available_extensions

WHERE name = 'pg_trgm';

ALTER EXTENSION <extension_name> UPDATE;

Troubleshooting Common Extension Issues

SELECT * FROM pg_extension;

DROP EXTENSION IF EXISTS <extension_name> CASCADE;

CREATE EXTENSION <extension_name>;

ALTER EXTENSION <name> UPDATE;

Regular backups are a key part of managing a TimescaleDB deployment. While Elestio provides
automated backups by default, you may want to perform manual backups for specific reasons,
such as preparing for a major change, keeping a local copy, or testing backup automation. This
guide walks through how to create TimescaleDB backups on Elestio using multiple approaches. It
covers manual backups through the Elestio dashboard, using TimescaleDB CLI tools, and Docker
Compose-based setups. It also includes advice for backup storage, retention policies, and
automation using scheduled jobs.

If you’re using Elestio’s managed TimescaleDB service, the easiest way to create a manual backup
is through the dashboard. This built-in method creates a full snapshot of your current database
state and stores it within Elestio’s infrastructure. These backups are tied to your service and can be
restored through the same interface. This option is recommended when you need a quick,
consistent backup without using any terminal commands.

To trigger a manual backup from the Elestio dashboard:

1. Log in to the Elestio dashboard and navigate to your TimescaleDB service/cluster.
2. Click the Backups tab in the service menu.
3. Select Back up now to generate a snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

https://docs.elest.io/uploads/images/gallery/2025-05/Irxscreenshot-2025-05-13-at-3-05-24-pm.jpg

TimescaleDB/PostgreSQL provides a set of command-line tools that are useful when you want to
create backups from your terminal. These include pg_dump exporting the database, psql for basic
connectivity and queries, and pg_restore restoring backups. This approach is useful when you need
to store backups locally or use them with custom automation workflows. The CLI method gives you
full control over the backup format and destination.

To use the CLI tools, you’ll need the database host, port, name, username, and password. These
details can be found in the Overview section of your TimescaleDB service in the Elestio
dashboard.

Use pg_dump to export the database in a custom format. This format is flexible and preferred for
restore operations using pg_restore. Replace the values with actual values that you copied from the
Elestio overview page.

Manual Backups Using CLI

Collect Database Connection Info

Back Up with pg_dump

https://docs.elest.io/uploads/images/gallery/2025-05/8LVscreenshot-2025-05-13-at-12-30-16-pm.jpg

This command connects to the Elestio database and creates a .dump file containing your data. You
can use the -v flag for verbose output and confirm that the backup completed successfully.

If your TimescaleDB database is deployed through a Docker Compose setup on Elestio, you can run
the pg_dump command from within the running container. This is useful when the tools are installed
inside the container environment and you want to keep everything self-contained. The backup can
be created inside the container and then copied to your host system for long-term storage or
transfer.

Head over to your deployed TimescaleDB service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

PGPASSWORD='<your-db-password>' pg_dump \

 -U <username> \

 -h <host> \

 -p <port> \

 -Fc -v \

 -f <output_file>.dump \

 <database_name>

Manual Backups Using Docker
Compose

Access Elestio Terminal

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

This command runs pg_dump from inside the container and saves the backup to a file in /tmp. Make
sure you have the following things in command in your env, else replace them with actual values
and not the env variables.

This assumes that environment variables like TIMESCALE_USER, TIMESCALE_PASSWORD, and TIMESCALE_DB
 are defined in your Compose setup.

cd /opt/app/

Run pg_dump Inside the Container

docker-compose exec postgres \

 bash -c "PGPASSWORD='\$TIMESCALE_PASSWORD' pg_dump -U \$TIMESCALE_USER -Fc -v \$TIMESCALE_DB

> /tmp/manual_backup.dump"

Copy Backup to Host

https://docs.elest.io/uploads/images/gallery/2025-05/glsimage.png

After creating the backup inside the container, use docker cp to copy the file to your host machine.

This creates a local copy of the backup file, which you can then upload to external storage or keep
for versioned snapshots.

Once backups are created, they should be stored securely and managed with a clear retention
policy. Proper naming, encryption, and rotation reduce the risk of data loss and help during
recovery. Use timestamped filenames to identify when the backup was created. External storage
services such as AWS S3, Backblaze B2, or an encrypted server volume are recommended for long-
term storage.

Here are some guidelines to follow:

Name your backups clearly: mydb_backup_2024_04_02.dump.
Store in secure, off-site storage if possible.
Retain 7 daily backups, 4 weekly backups, and 3–6 monthly backups.
Remove old backups automatically to save space.

By combining storage hygiene with regular scheduling, you can maintain a reliable backup history
and reduce manual effort.

Manual backup commands can be scheduled using tools like cron on Linux-based systems. This
allows you to regularly back up your database without needing to run commands manually.
Automating the process also reduces the risk of forgetting backups and ensures more consistent
retention.

Open your crontab file for editing:

Then add a job like the following:

docker cp $(docker-compose ps -q postgres):/tmp/manual_backup.dump ./manual_backup.dump

Backup Storage & Retention Best
Practices

Automating Manual Backups (cron)

Example: Daily Backup at 2 AM

crontab -e

Make sure the /backups/ directory exists and is writable by the user running the job. You can also
compress the backup and upload it to a remote destination as part of the same script.

0 2 * * * PGPASSWORD='mypassword' pg_dump -U elestio -h db-xyz.elestio.app -p 5432 -Fc -f

/backups/backup_$(date +\%F).dump mydatabase

Restoring backups is essential for recovery, environment duplication, or rollback scenarios. Elestio
supports restoring backups both through its built-in dashboard and via command-line tools like
pg_restore psql. You can also restore from inside Docker Compose environments. This guide
provides detailed steps for full and partial restores using each method and explains how to address
common errors that occur during restoration.

This method is used when you’ve created a .dump file using pg_dump in custom format. You can
restore it using pg_restore , which gives you fine-grained control over what gets restored. This is
useful for restoring backups to new environments, during version upgrades, or testing data locally.

If the database you’re restoring into doesn’t already exist, you must create it first.

This command restores the full contents of the .dump file into the specified database.

You can add --clean to drop existing objects before restoring.

Restoring a Backup

Restoring from a Backup via
Terminal

Create the target database if it does not exist

PGPASSWORD='<your-password>' createdb \

 -U <username> \

 -h <host> \

 -p <port> \

 <database_name>

Run pg_restore to import the backup

PGPASSWORD='<your-password>' pg_restore \

 -U <username> \

 -h <host> \

 -p <port> \

 -d <database_name> \

 -v <backup_file>.dump

If your TimescaleDB service is deployed using Docker Compose, you can restore the database
inside the container environment. This is useful when TimescaleDB runs in an isolated Docker
setup, and you want to handle all backup and restore processes inside that environment.

Use docker cp to move the .dump file from your host machine to the TimescaleDB container.

Use pg_restore from within the container to restore the file to the database.

Make sure your environment variables in the Docker Compose file match the values used here.

TimescaleDB supports partial restores, allowing you to restore only selected tables, schemas, or
schema definitions. This can be useful when recovering a specific part of the database or testing
part of the data.

Use the -t flag to restore only one table from the .dump file.

Restoring via Docker Compose

Copy the backup into the container

docker cp ./manual_backup.dump $(docker-compose ps -q postgres):/tmp/manual_backup.dump

Run the restore inside the container

docker-compose exec postgres \

 bash -c "PGPASSWORD='\$TIMESCALE_PASSWORD' pg_restore -U \$TIMESCALE_USER -d \$TIMESCALE_DB

-Fc -v /tmp/manual_backup.dump"

Partial Restores

Restore a specific table

PGPASSWORD='<your-password>' pg_restore \

 -U <username> \

 -h <host> \

 -p <port> \

 -d <database_name> \

 -t <table_name> \

 -v <backup_file>.dump

Restore schema only (no data)

This command will restore only the table structures, types, functions, and other schema definitions
without inserting any data.

Partial restores work best with custom-format .dump files generated by pg_dump -Fc .

Errors during restore are often caused by permission issues, incorrect formats, or missing objects.
Understanding the error messages and their causes will help you recover faster and avoid data
loss.

1. Could not connect to database

This usually happens if the database doesn’t exist or the credentials are incorrect. Make sure the
database has been created and the connection details are correct.

2. Permission denied for schema

This error indicates that the user account used for restore lacks the privileges needed to write into
the schema. Use a superuser account or adjust the schema permissions before restoring.

3. Input file appears to be a text format dump

This means you are trying to use pg_restore a plain SQL file. In this case, you should use psql
instead:

pg_restore \

 -U <username> \

 -h <host> \

 -p <port> \

 -d <database_name> \

 --schema-only \

 -v <backup_file>.dump

Common Errors & How to Fix Them

pg_restore: [archiver] could not connect to database

ERROR: permission denied for schema public

pg_restore: error: input file appears to be a text format dump

psql -U <username> -h <host> -p <port> -d <database_name> -f backup.sql

4. Duplicate key value violates unique constraint

This occurs when the restore process tries to insert rows that already exist in the target database.
You can either drop the target database before restoring or use --clean it in pg_restore to drop
existing objects automatically.

Slow queries can significantly affect application performance and user experience. TimescaleDB
offers built-in tools to analyze and identify these slow operations. On Elestio, whether you’re
connected via terminal, inside a Docker Compose container, or using TimescaleDB CLI tools, you
can use several methods to pinpoint and fix performance issues. This guide walks through various
techniques to identify slow queries, interpret execution plans, and apply optimizations.

When connected to your TimescaleDB service via terminal, you can use built-in tools like psql and
SQL functions to observe how queries behave. This method is useful for immediate, ad hoc
diagnostics in production or staging environments. You can use simple commands to view currently
running queries, analyze individual query plans, and measure runtime performance. These steps
help determine which queries are taking the most time and why.

Use psql to connect directly to your TimescaleDB instance. This provides access to administrative
and diagnostic SQL commands.

Now use the following command to show the query plan the database will use. It highlights whether
TimescaleDB will perform a sequential scan, index scan, or other operation.

Another type of command that executes the query and returns actual runtime and row counts.
Comparing planned and actual rows helps determine if the planner is misestimating costs.

Lastly, monitor queries in real time using the following command. This view lists all active queries,
sorted by duration. It helps you identify queries that are taking too long and might need
optimization.

Identifying Slow Queries

Analyzing Slow Queries Using
Terminal

psql -U <username> -h <host> -d <database>

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 42;

SELECT pid, now() - query_start AS duration, query

FROM pg_stat_activity

If your TimescaleDB is deployed using Docker Compose on Elestio, you can inspect and
troubleshoot slow queries from within the container. This method is useful when the TimescaleDB
instance is isolated inside a container and not accessible directly from the host. Logs and query
data can be collected from inside the service container using TimescaleDB tools or by checking
configuration files.

This command opens a shell inside the running TimescaleDB container. From here, you can run
commands like psql or view logs. Use the same psql interface from inside the container to interact
with the database and execute analysis commands.

Next, edit tdb.conf inside the container to enable slow query logging:

This setting logs all queries that take longer than 500 milliseconds. You may need to restart the
container for these settings to take effect.

PostgreSQL offers CLI-based tools and extensions like pg_stat_statements for long-term query
performance analysis. These tools provide aggregated metrics over time, helping you spot
frequently executed but inefficient queries. This section shows how to use TimescaleDB extensions
and views to collect detailed statistics.

WHERE state = 'active'

ORDER BY duration DESC;

Analyzing Slow Queries in Docker
Compose Environments

docker-compose exec postgres bash

psql -U $TIMESCALE_USER -d $TIMESCALE_DB

log_min_duration_statement = 500

log_statement = 'none'

Using CLI Tools to Analyze Query
Performance

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

This extension logs each executed query along with performance metrics such as execution time
and row count. The next command shows the queries that have consumed the most total execution
time. These are strong candidates for indexing or rewriting.

TimescaleDB/ PostgreSQL’s query planner produces execution plans that describe how a query will
be executed. Reading these plans can help identify operations that slow down performance, such
as full table scans or repeated joins. Comparing estimated and actual rows processed can also
reveal outdated statistics or inefficient filters. Understanding these elements is key to choosing the
right optimization strategy.

Seq Scan: A full table scan; slow on large tables unless indexed.
Index Scan: Uses an index for fast lookup; typically faster than a sequential scan.
Cost: Estimated cost of the query, used by the planner to decide the best execution path.
Rows: Estimated vs. actual rows; large mismatches indicate bad planning or outdated
stats.
Execution Time: Total time it took to run the query; from EXPLAIN ANALYZE.

Use these metrics to compare how the query was expected to run versus how it actually
performed.

Once you’ve identified slow queries, the next step is to optimize them. Optimizations may involve
adding indexes, rewriting SQL statements, or updating statistics. The goal is to reduce scan times,
avoid redundant operations, and guide the planner to more efficient execution paths. Performance
tuning is iterative—test after each change.

SELECT query, calls, total_time, mean_time, rows

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Understanding Execution Plans and
Metrics

Key elements to understand:

Optimizing Queries for Better
Performance

Common optimization steps:

Add indexes to columns used in WHERE, JOIN, and ORDER BY clauses.
Use EXPLAIN ANALYZE before and after changes to measure impact.
Avoid SELECT * to reduce data transfer and memory use.
Use LIMIT to restrict row output when only a subset is needed.
Run ANALYZE to update TimescaleDB's internal statistics and improve planner accuracy:

By focusing on frequent and long-running queries, you can make improvements that significantly
reduce overall load on the database.

ANALYZE;

Long-running queries can significantly impact database performance by consuming CPU, memory,
and I/O resources over extended periods. In production environments like Elestio, it’s important to
monitor for these queries and take timely action to terminate them when necessary. TimescaleDB
provides built-in monitoring tools and system views to help detect problematic queries and respond
accordingly. This guide covers how to identify and cancel long-running queries using TimescaleDB's
terminal tools, Docker Compose environments, and logging features, along with preventive
practices.

When connected to your TimescaleDB service through the terminal using psql, you can check
which queries are running and how long they have been active. This can help identify queries that
are stuck, inefficient, or blocked.

To list all active queries sorted by duration, you can use:

This query reveals which operations have been running the longest and their current state. If you
want to isolate queries that have exceeded a specific duration (e.g., 1 minute), add a time filter:

These queries help you locate potential performance bottlenecks in real time.

Detect and terminate long-
running queries

Identifying Long-Running Queries
via Terminal

SELECT pid, now() - query_start AS duration, state, query

FROM pg_stat_activity

WHERE state = 'active'

ORDER BY duration DESC;

SELECT pid, now() - query_start AS runtime, query

FROM pg_stat_activity

WHERE state = 'active' AND now() - query_start > interval '1 minute';

Once a problematic query is identified, TimescaleDB allows you to cancel it using the pid (process
ID). If you want to cancel the query without affecting the client session, use:

This tells TimescaleDB to stop the running query, but keep the session connected. If the query is
unresponsive or the client is idle for too long, you can fully terminate the session using:

This forcibly closes the session and stops the query. Termination should be used cautiously,
especially in shared application environments.

If TimescaleDB is deployed using Docker Compose on Elestio, you can detect and manage queries
from inside the container. Start by entering the container:

Inside the container, connect to the database with:

From here, you can use the same commands as above to monitor and cancel long-running queries.
The logic remains the same; you’re simply operating inside the container’s shell environment.

TimescaleDB supports logging queries that exceed a certain duration threshold, which is useful for
long-term monitoring and post-incident review. To enable this, modify your tdb.conf file and set:

Terminating Long-Running Queries
Safely

SELECT pg_cancel_backend(<pid>);

SELECT pg_terminate_backend(<pid>);

Working Within Docker Compose
Environments

docker-compose exec postgres bash

psql -U $TIMESCALE_USER -d $TIMESCALE_DB

Using Logs and Monitoring Tools

log_min_duration_statement = 500

This setting logs every query that takes longer than 500 milliseconds. The logs are written to
TimescaleDB's log files, which you can access through the Elestio dashboard (if supported) or
inside the container under the TimescaleDB data directory.

For cumulative insights, enable the pg_stat_statements extension to track long-running queries
over time:

Then query the collected data:

This shows which queries are consistently expensive, not just slow once.

Preventing long-running queries is more effective than terminating them after the fact. Start by
indexing columns used in WHERE, JOIN, and ORDER BY clauses. Use query analysis tools like
EXPLAIN ANALYZE to find out how queries are executed and where performance issues may occur.

Also, consider setting timeouts for queries. At the session level, you can use:

This automatically cancels any query that runs longer than 2 seconds. For applications, set timeout
configurations in the client or ORM layer to ensure they don’t wait indefinitely on slow queries.
Monitoring tools and alerts can help you detect abnormal query behavior early. If you’re managing
your own monitoring stack, connect it to TimescaleDB logs or pg_stat_activity to trigger alerts for
long-running operations.

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

SELECT query, total_time, mean_time, calls

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Best Practices to Prevent Long-
Running Queries

SET statement_timeout = '2s';

Running out of disk space in a database environment can lead to failed writes, service downtime,
and even data corruption. TimescaleDB systems require available space not only for storing data
but also for managing temporary files, WAL logs, indexes, and routine background tasks. On
Elestio, while infrastructure is managed, you are still responsible for monitoring growth and
preventing overuse. This guide outlines how to monitor disk usage, configure alerts, automate
cleanup, and follow best practices to avoid full disk conditions in TimescaleDB.

Proactively monitoring disk usage helps you detect unusual growth in time to act. Whether you’re
accessing your database directly via the terminal or through a Docker Compose environment,
several built-in tools can provide usage stats and trends. Combining filesystem-level monitoring
with TimescaleDB-specific checks gives a complete view of space utilization

To check the overall disk usage of the system from a terminal or container:

This command shows available space for each mounted volume. Focus on the mount point where
your TimescaleDB data directory is stored, usually /var/lib/postgresql.

For detailed TimescaleDB-specific usage, connect to your database and run:

This shows the total size used by the active database. You can also analyze individual tables and
indexes using:

This query highlights the largest tables by size, helping you identify which parts of your schema
consume the most space.

Preventing Full Disk Issues

Monitoring Disk Usage

df -h

SELECT pg_size_pretty(pg_database_size(current_database()));

SELECT relname AS object, pg_size_pretty(pg_total_relation_size(relid)) AS size

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_total_relation_size(relid) DESC

LIMIT 10;

Even with monitoring in place, automatic alerts and cleanup scripts ensure you act before hitting
disk limits. You can set up external monitoring agents or run container-level scripts to track disk
usage and notify you.

If you’re using Docker Compose, you can monitor container-level storage stats using:

This command provides an overview of Docker volumes, images, and container usage. To monitor
and clean unused volumes and logs manually:

Make sure you’re not deleting active database volumes. Always verify that backups exist and are
up-to-date before running cleanup commands.

To configure TimescaleDB-specific cleanup, enable auto-vacuum and monitor its effectiveness.
TimescaleDB removes dead tuples and reclaims space using this process. Check the vacuum
activity with:

If dead tuples accumulate, increase autovacuum frequency or run a manual vacuum:

Autovacuum settings can also be tuned in tdb.conf to trigger more aggressively based on table
activity.

Beyond immediate cleanup, long-term strategies help keep disk usage under control.
These include data retention policies, partitioning, compression, and regular maintenance.
It’s also important to have a growth plan based on usage trends.

Configuring Alerts and Cleanup

docker system df

docker volume ls

docker volume rm <volume-name>

SELECT relname, n_dead_tup, last_vacuum, last_autovacuum

FROM pg_stat_user_tables

ORDER BY n_dead_tup DESC;

VACUUM ANALYZE;

Best Practices for Disk Space
Management

Avoid storing large binary objects like images or PDFs directly in the database. Use object
storage for large files and reference them by URL. If historical data is no longer needed for
queries, archive it into a separate cold-storage database or export to files.
Partition large tables by time or ID ranges to manage growth and make pruning easier.
Use tools like pg_partman native TimescaleDB table partitioning to automatically offload
older data
Regularly rotate and clean up TimescaleDB logs and WAL files. If using archive mode,
ensure archived WALs are uploaded and removed from disk after successful backup.
To keep your setup safe, also monitor backup file sizes and locations. Backups stored on
the same volume as the database may consume critical space. If possible, push backups
to remote object storage or another disk volume.

As your TimescaleDB database grows over time, it’s important to monitor its size and identify what
parts of the database consume the most space. Unmanaged growth can lead to performance
issues, disk exhaustion, and backup delays. On Elestio, where TimescaleDB is hosted in a managed
environment, you can use SQL and command-line tools to measure database usage, analyze large
objects, and troubleshoot storage problems. This guide explains how to check database size, detect
bloated tables and indexes, and optimize storage usage efficiently.

TimescaleDB provides built-in functions to report the size of the current database, its individual
schemas, tables, and indexes. These functions are useful for understanding where most of your
storage is being used and planning cleanup or archiving strategies.

To check the total size of the active database:

This returns a human-readable value like “2 GB”, indicating how much space the entire database
consumes on disk.

To list the largest tables in your schema:

This helps you identify which tables take up the most space, including indexes and TOAST (large
field) data.

To break down table vs index size separately:

Checking Database Size and
Related Issues

Checking Database and Table Sizes

SELECT pg_size_pretty(pg_database_size(current_database()));

SELECT relname AS table, pg_size_pretty(pg_total_relation_size(relid)) AS total_size

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_total_relation_size(relid) DESC

LIMIT 10;

SELECT relname AS object,

 pg_size_pretty(pg_relation_size(relid)) AS table_size,

 pg_size_pretty(pg_indexes_size(relid)) AS index_size

This distinction allows you to assess whether most space is used by raw table data or indexes,
which can inform optimization decisions.

Database bloat occurs when TimescaleDB retains outdated or deleted rows due to its MVCC model.
This is common in high-write tables and can lead to wasted space and degraded performance.
Bloated indexes and tables are often invisible unless explicitly checked. To estimate bloat at a
table level, you can use a community query like this:

This query calculates how much of a table’s total size is not accounted for by its base data—higher
percentages suggest unused or dead space. You can also check dead tuples directly:

A high count of dead tuples suggests that autovacuum might not be keeping up and that a manual
VACUUM could help.

Once you’ve identified large or bloated objects, the next step is to optimize them. TimescaleDB
offers tools like VACUUM, REINDEX, and CLUSTER to reclaim space and improve storage efficiency.
These commands must be run with care to avoid locking critical tables during active hours. To
reclaim dead tuples and update statistics:

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_relation_size(relid) DESC

LIMIT 10;

Identifying Bloat and Inefficiencies

SELECT schemaname, relname, round(100 * (pg_total_relation_size(relid) -

pg_relation_size(relid)) / pg_total_relation_size(relid), 2) AS bloat_pct

FROM pg_catalog.pg_statio_user_tables

ORDER BY bloat_pct DESC

LIMIT 10;

SELECT relname, n_dead_tup

FROM pg_stat_user_tables

ORDER BY n_dead_tup DESC

LIMIT 10;

Optimizing and Reducing Database
Size

This command removes dead rows and refreshes query planning statistics, which helps
performance and frees up storage. To shrink large indexes that aren’t cleaned automatically, use:

This recreates the table’s indexes from scratch and can free up disk space if indexes are
fragmented or bloated. If a table is heavily bloated and full table rewrites are acceptable during
maintenance, use:

This rewrites the entire table based on an index order and reclaims space similar to VACUUM FULL,
but with more control.

Additionally, removing or archiving old data from large time-based tables can reduce total size.
Consider partitioning large tables to manage this process more efficiently.

VACUUM ANALYZE;

REINDEX TABLE <table_name>;

CLUSTER <table_name>;

