
TimescaleDB allows you to create databases using different methods, including the PostgreSQL
interactive shell (psql), Docker (assuming TimescaleDB is running inside a container), and the
command-line interface (createdb). This guide explains each method step-by-step, covering
required permissions, best practices, and troubleshooting common issues.

TimescaleDB is a database system that stores and manages structured data efficiently. The psql
tool is an interactive command-line interface (CLI) that allows users to execute SQL commands
directly on a TimescaleDB database. Follow these steps to create a database:

Open terminal on your local system, and if TimescaleDB is installed locally, connect using the
following command. If not installed, install from official website:

For a remote database, use:

Replace HOST with the database server address, USER with the TimescaleDB username, and
DATABASE with an existing database name.

Inside the psql shell, run:

The default settings will apply unless specified otherwise. To customize the encoding and collation,
use:

Creating a Database

Creating Using psql CLI

Connect to TimescaleDB

psql -U postgres

psql -h HOST -U USER -d DATABASE

Create a New Database

CREATE DATABASE mydatabase;

CREATE DATABASE mydatabase ENCODING 'UTF8' LC_COLLATE 'en_US.UTF-8' LC_CTYPE 'en_US.UTF-8'

TEMPLATE template0;

https://www.postgresql.org/download/

Docker is a tool that helps run applications in isolated environments called containers. A
TimescaleDB container provides a self-contained database instance that can be quickly deployed
and managed. If you are running TimescaleDB inside a Docker container, follow these steps:

Head over to your deployed TimescaleDB service dashboard and head over to Tools > Terminal.
Use the credentials provided there to log in to your terminal.

Once you are in your terminal, run the following command to head over to the correct directory to
perform the next steps

Instead of pulling an image or running the container manually, use Docker Compose to interact
with your running container. As you are using Elestio, it will already be a Docker compose:

Creating Database in Docker

Access Elestio Terminal

cd /opt/app/

Access the TimescaleDB Container Shell

https://docs.elest.io/uploads/images/gallery/2025-05/Yujimage.png

This opens a shell session inside the running TimescaleDB container.

Once inside the container shell, if environment variables like POSTGRES_USER and POSTGRES_DB are
already set in the stack, you can use them directly:

Or use the default one:

Now, to create a database, use the following command. This command tells TimescaleDB to create
a new logical database called mydatabase . By default, it inherits settings like encoding and collation
from the template database (template1), unless specified otherwise.

You can quickly list the database you just created using the following command

The createdb command simplifies database creation from the terminal without using psql .

Check the TimescaleDB service status, this ensures that the TimescaleDB instance is running on
your local instance:

If not running, start it:

docker-compose exec postgres bash

Use Environment Variables to Connect via psql

psql -U "$TIMESCALE_USER" -d "$TIMESCALE_DB"

psql -U postgres

Create Database

CREATE DATABASE mydatabase;

/l

Creating Using createdb CLI

Ensure TimescaleDB is Running

sudo systemctl status timescale

sudo systemctl start timescale

Now, you can create a simple database using the following command:

To specify encoding and collation:

List all databases using the following commands, as it will list all the databases available under
your TimescaleDB:

Next, you can easily connect with the database using the psql command and start working on it.

Creating a database requires the CREATEDB privilege. By default, the postgres user has this
privilege. To grant it to another user:

For restricted access, assign specific permissions:

Create a Database

createdb -U postgres mydatabase

createdb -U postgres --encoding=UTF8 --lc-collate=en_US.UTF-8 --lc-ctype=en_US.UTF-8

mydatabase

Verify Database Creation

psql -U postgres -l

Connect to the New Database

psql -U postgres -d mydatabase

Required Permissions for Database
Creation

ALTER USER username CREATEDB;

CREATE ROLE newuser WITH LOGIN PASSWORD 'securepassword';

GRANT CONNECT ON DATABASE mydatabase TO newuser;

GRANT USAGE ON SCHEMA public TO newuser;

GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO newuser;

Use Meaningful Names: Choosing clear and descriptive names for databases helps in
organization and maintenance. Avoid generic names like testdb or database1 , as they do
not indicate the database’s purpose. Instead, use names that reflect the type of data
stored, such as customer_data or sales_records . Meaningful names make it easier for
developers and administrators to understand the database’s function without extra
documentation.
Follow Naming Conventions: A standardized naming convention ensures consistency
across projects and simplifies database management. TimescaleDB is case-sensitive, so
using lowercase letters and underscores (e.g., order_details) is recommended to avoid
unnecessary complexities. Avoid spaces and special characters in names, as they require
additional quoting in SQL queries.
Restrict User Permissions: Granting only the necessary permissions improves
database security and reduces risks. By default, users should have the least privilege
required for their tasks, such as read-only access for reporting tools. Superuser or
administrative privileges should be limited to trusted users to prevent accidental or
malicious changes. Using roles and groups simplifies permission management and
ensures consistent access control.
Enable Backups: Regular backups ensure data recovery in case of accidental deletions,
hardware failures, or security breaches. TimescaleDB provides built-in tools like pg_dump
for single-database backups and pg_basebackup for full-instance backups. Automating
backups using cron jobs or scheduling them through a database management tool
reduces the risk of data loss.
Monitor Performance: Monitoring database performance helps identify bottlenecks,
optimize queries, and ensure efficient resource utilization. TimescaleDB provides system
views like pg_stat_activity and pg_stat_database to track query execution and database
usage. Analyzing slow queries using EXPLAIN ANALYZE helps in indexing and optimization.

Issue Possible Cause Solution

ERROR: permission denied to create
database

User lacks CREATEDB privileges Grant permission using ALTER USER
username CREATEDB;

Best Practices for Creating
Databases

SELECT datname, numbackends, xact_commit, blks_read FROM pg_stat_database;

Common Issues and
Troubleshooting

Revision #1
Created 13 May 2025 09:27:30 by kaiwalya
Updated 13 May 2025 09:33:36 by kaiwalya

Issue Possible Cause Solution

ERROR: database "mydatabase" already
exists

Database name already taken Use a different name or drop the
existing one with DROP DATABASE
mydatabase;

FATAL: database "mydatabase" does
not exist

Attempting to connect to a non-
existent database

Verify creation using \l

psql: could not connect to server TimescaleDB is not running Start TimescaleDB with sudo
systemctl start timescale

ERROR: role "username" does not
exist

The specified user does not exist Create the user with CREATE ROLE
username WITH LOGIN PASSWORD
'password';

