
Long-running queries can significantly impact database performance by consuming CPU, memory,
and I/O resources over extended periods. In production environments like Elestio, it’s important to
monitor for these queries and take timely action to terminate them when necessary. TimescaleDB
provides built-in monitoring tools and system views to help detect problematic queries and respond
accordingly. This guide covers how to identify and cancel long-running queries using TimescaleDB's
terminal tools, Docker Compose environments, and logging features, along with preventive
practices.

When connected to your TimescaleDB service through the terminal using psql, you can check
which queries are running and how long they have been active. This can help identify queries that
are stuck, inefficient, or blocked.

To list all active queries sorted by duration, you can use:

This query reveals which operations have been running the longest and their current state. If you
want to isolate queries that have exceeded a specific duration (e.g., 1 minute), add a time filter:

These queries help you locate potential performance bottlenecks in real time.

Detect and terminate long-
running queries

Identifying Long-Running Queries
via Terminal

SELECT pid, now() - query_start AS duration, state, query

FROM pg_stat_activity

WHERE state = 'active'

ORDER BY duration DESC;

SELECT pid, now() - query_start AS runtime, query

FROM pg_stat_activity

WHERE state = 'active' AND now() - query_start > interval '1 minute';

Once a problematic query is identified, TimescaleDB allows you to cancel it using the pid (process
ID). If you want to cancel the query without affecting the client session, use:

This tells TimescaleDB to stop the running query, but keep the session connected. If the query is
unresponsive or the client is idle for too long, you can fully terminate the session using:

This forcibly closes the session and stops the query. Termination should be used cautiously,
especially in shared application environments.

If TimescaleDB is deployed using Docker Compose on Elestio, you can detect and manage queries
from inside the container. Start by entering the container:

Inside the container, connect to the database with:

From here, you can use the same commands as above to monitor and cancel long-running queries.
The logic remains the same; you’re simply operating inside the container’s shell environment.

TimescaleDB supports logging queries that exceed a certain duration threshold, which is useful for
long-term monitoring and post-incident review. To enable this, modify your tdb.conf file and set:

Terminating Long-Running Queries
Safely

SELECT pg_cancel_backend(<pid>);

SELECT pg_terminate_backend(<pid>);

Working Within Docker Compose
Environments

docker-compose exec postgres bash

psql -U $TIMESCALE_USER -d $TIMESCALE_DB

Using Logs and Monitoring Tools

log_min_duration_statement = 500

Revision #1
Created 13 May 2025 09:53:20 by kaiwalya
Updated 13 May 2025 09:54:24 by kaiwalya

This setting logs every query that takes longer than 500 milliseconds. The logs are written to
TimescaleDB's log files, which you can access through the Elestio dashboard (if supported) or
inside the container under the TimescaleDB data directory.

For cumulative insights, enable the pg_stat_statements extension to track long-running queries
over time:

Then query the collected data:

This shows which queries are consistently expensive, not just slow once.

Preventing long-running queries is more effective than terminating them after the fact. Start by
indexing columns used in WHERE, JOIN, and ORDER BY clauses. Use query analysis tools like
EXPLAIN ANALYZE to find out how queries are executed and where performance issues may occur.

Also, consider setting timeouts for queries. At the session level, you can use:

This automatically cancels any query that runs longer than 2 seconds. For applications, set timeout
configurations in the client or ORM layer to ensure they don’t wait indefinitely on slow queries.
Monitoring tools and alerts can help you detect abnormal query behavior early. If you’re managing
your own monitoring stack, connect it to TimescaleDB logs or pg_stat_activity to trigger alerts for
long-running operations.

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

SELECT query, total_time, mean_time, calls

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Best Practices to Prevent Long-
Running Queries

SET statement_timeout = '2s';

