
Slow queries can significantly affect application performance and user experience. TimescaleDB
offers built-in tools to analyze and identify these slow operations. On Elestio, whether you’re
connected via terminal, inside a Docker Compose container, or using TimescaleDB CLI tools, you
can use several methods to pinpoint and fix performance issues. This guide walks through various
techniques to identify slow queries, interpret execution plans, and apply optimizations.

When connected to your TimescaleDB service via terminal, you can use built-in tools like psql and
SQL functions to observe how queries behave. This method is useful for immediate, ad hoc
diagnostics in production or staging environments. You can use simple commands to view currently
running queries, analyze individual query plans, and measure runtime performance. These steps
help determine which queries are taking the most time and why.

Use psql to connect directly to your TimescaleDB instance. This provides access to administrative
and diagnostic SQL commands.

Now use the following command to show the query plan the database will use. It highlights whether
TimescaleDB will perform a sequential scan, index scan, or other operation.

Another type of command that executes the query and returns actual runtime and row counts.
Comparing planned and actual rows helps determine if the planner is misestimating costs.

Lastly, monitor queries in real time using the following command. This view lists all active queries,
sorted by duration. It helps you identify queries that are taking too long and might need
optimization.

Identifying Slow Queries

Analyzing Slow Queries Using
Terminal

psql -U <username> -h <host> -d <database>

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 42;

SELECT pid, now() - query_start AS duration, query

FROM pg_stat_activity

If your TimescaleDB is deployed using Docker Compose on Elestio, you can inspect and
troubleshoot slow queries from within the container. This method is useful when the TimescaleDB
instance is isolated inside a container and not accessible directly from the host. Logs and query
data can be collected from inside the service container using TimescaleDB tools or by checking
configuration files.

This command opens a shell inside the running TimescaleDB container. From here, you can run
commands like psql or view logs. Use the same psql interface from inside the container to interact
with the database and execute analysis commands.

Next, edit tdb.conf inside the container to enable slow query logging:

This setting logs all queries that take longer than 500 milliseconds. You may need to restart the
container for these settings to take effect.

PostgreSQL offers CLI-based tools and extensions like pg_stat_statements for long-term query
performance analysis. These tools provide aggregated metrics over time, helping you spot
frequently executed but inefficient queries. This section shows how to use TimescaleDB extensions
and views to collect detailed statistics.

WHERE state = 'active'

ORDER BY duration DESC;

Analyzing Slow Queries in Docker
Compose Environments

docker-compose exec postgres bash

psql -U $TIMESCALE_USER -d $TIMESCALE_DB

log_min_duration_statement = 500

log_statement = 'none'

Using CLI Tools to Analyze Query
Performance

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

This extension logs each executed query along with performance metrics such as execution time
and row count. The next command shows the queries that have consumed the most total execution
time. These are strong candidates for indexing or rewriting.

TimescaleDB/ PostgreSQL’s query planner produces execution plans that describe how a query will
be executed. Reading these plans can help identify operations that slow down performance, such
as full table scans or repeated joins. Comparing estimated and actual rows processed can also
reveal outdated statistics or inefficient filters. Understanding these elements is key to choosing the
right optimization strategy.

Seq Scan: A full table scan; slow on large tables unless indexed.
Index Scan: Uses an index for fast lookup; typically faster than a sequential scan.
Cost: Estimated cost of the query, used by the planner to decide the best execution path.
Rows: Estimated vs. actual rows; large mismatches indicate bad planning or outdated
stats.
Execution Time: Total time it took to run the query; from EXPLAIN ANALYZE.

Use these metrics to compare how the query was expected to run versus how it actually
performed.

Once you’ve identified slow queries, the next step is to optimize them. Optimizations may involve
adding indexes, rewriting SQL statements, or updating statistics. The goal is to reduce scan times,
avoid redundant operations, and guide the planner to more efficient execution paths. Performance
tuning is iterative—test after each change.

SELECT query, calls, total_time, mean_time, rows

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Understanding Execution Plans and
Metrics

Key elements to understand:

Optimizing Queries for Better
Performance

Common optimization steps:

Revision #1
Created 13 May 2025 09:50:20 by kaiwalya
Updated 13 May 2025 09:52:53 by kaiwalya

Add indexes to columns used in WHERE, JOIN, and ORDER BY clauses.
Use EXPLAIN ANALYZE before and after changes to measure impact.
Avoid SELECT * to reduce data transfer and memory use.
Use LIMIT to restrict row output when only a subset is needed.
Run ANALYZE to update TimescaleDB's internal statistics and improve planner accuracy:

By focusing on frequent and long-running queries, you can make improvements that significantly
reduce overall load on the database.

ANALYZE;

