
Creating a Database
Upgrading to Major Version
Installing and Updating an Extension
Creating Manual Backups
Restoring a Backup
Identifying Slow Queries
Detect and terminate long-running queries
Preventing Full Disk
Checking Database Size and Related Issues

How-To Guides

Valkey is a high-performance fork of Redis that emphasizes open governance and continued
compatibility while introducing community-driven enhancements. Setting up Valkey correctly is
essential for achieving low-latency performance and ensuring durability in modern applications.
This guide walks through various methods to run and connect to Valkey: using the Valkey CLI,
running inside Docker containers, and integrating with scripting workflows. It also outlines best
practices to follow during configuration and operation.

Valkey provides a built-in command-line interface tool called valkey-cli. It allows direct interaction
with a Valkey server and supports both local and remote connections. All standard Redis-
compatible commands can be executed through this tool, along with any features supported by
Valkey.

If you have a local Valkey instance running, either from a package manager or inside Docker, you
can start the CLI with no extra arguments:

To connect to a remote Valkey instance, provide the host, port, and authentication details if
configured:

After executing the command, you will be placed in the Valkey shell, where you can interactively
issue commands.

Valkey can be containerized using Docker to ensure consistent environments across local
development, testing, and production systems. This is a convenient way to isolate dependencies
and manage deployment configurations.

Creating a Database

Creating Using valkey-cli

Connect to Valkey

valkey-cli

valkey-cli -h <host> -p <port> -a <password>

Running Valkey Using Docker

Access Elestio Terminal

If you are using Elestio to host your Valkey service, log in to the Elestio dashboard. Navigate to
your Valkey instance, then open Tools > Terminal. This will provide a browser-based shell within
the server environment that has access to your containerized services.

Once inside the terminal, switch to the application directory:

Elestio services use Docker Compose for container orchestration. To enter the Valkey container and
interact with its runtime environment, use the following command:

This starts a bash session inside the running Valkey container.

cd /opt/app/

Access the Valkey Container Shell

docker-compose exec valkey bash

Access Valkey CLI from Within the Container

https://docs.elest.io/uploads/images/gallery/2025-07/auaimage.png

The valkey-cli tool is available within the container and can be used to run commands directly
against the Valkey server. If authentication is required, supply the password using the -a flag:

You’ll now be connected to the Valkey instance running inside the container.

To confirm the Valkey instance is functional, run a test by setting and retrieving a key:

Expected output:

This confirms that read/write operations are working correctly inside the containerized Valkey
environment.

The valkey-cli command can also be used non-interactively, which is useful for shell scripts, cron
jobs, or CI/CD workflows that require interaction with the Valkey server.

To set a key via a script:

This will set the specified key in a single command without launching the interactive shell.

To ensure readability and manageability, adopt consistent naming conventions. Use namespaces
separated by colons to logically group related keys:

valkey-cli -a <password>

Test Connectivity

set testkey "Hello Valkey"

get testkey

"Hello Valkey"

Connecting Using valkey-cli in
Scripts

valkey-cli -h <host> -p <port> -a <password> SET example_key "example_value"

Best Practices for Setting Up Valkey
Use Meaningful Key Naming Conventions

This simplifies debugging, metric tracking, and migration efforts.

Valkey supports Redis-compatible data structures including strings, hashes, sets, sorted sets, lists,
and streams. Always choose the most efficient type based on access patterns and data lifecycle.
For example, hashes are ideal for storing grouped attributes, while sets work well for unique lists.

Inconsistent structure usage can lead to inefficient memory use and unexpected command
behavior.

Security should not be overlooked in production systems. Always configure a strong password
using the requirepass directive in valkey.conf. Additionally, enable TLS for encrypted traffic if the
database is accessible over the internet or across networks.

Example valkey.conf settings:

These settings help secure both access and data transmission.

Valkey supports both Redis-style persistence mechanisms: RDB snapshots and AOF logging. These
ensure data durability in the event of process restarts or hardware failure.

Recommended settings in valkey.conf:

Use AOF for greater durability, RDB for faster restarts, or both for a balanced setup.

Monitor performance using built-in Valkey commands like INFO, MONITOR, and SLOWLOG. These
provide insights into memory usage, command execution times, and system health. You can also

user:1001:profile

session:2025:token

Follow Consistent Data Structures

Enable Authentication and TLS

requirepass strong_secure_password

tls-port 6379

tls-cert-file /etc/ssl/certs/cert.pem

tls-key-file /etc/ssl/private/key.pem

Configure Persistence Options

save 900 1

appendonly yes

appendfsync everysec

Monitor and Tune Performance

integrate external monitoring tools like Prometheus, RedisInsight, or Grafana for real-time
visualization.

Proper monitoring allows you to proactively tune memory limits, max clients, and replication
settings.

Issue Cause Solution

NOAUTH Authentication required Connecting to an instance that
requires a password without one

Use the -a flag or send the AUTH
command before other commands

ERR Client sent AUTH, but no
password is set

Authentication is attempted on a
server that does not require it

Remove the -a option or check the
requirepass directive

Cannot connect to Valkey on
‘localhost’

The server is not running or bound to
another address/port

Check service status and inspect
valkey.conf and Docker port
mappings

Docker Valkey container refuses
connections

Network misconfiguration or the
container is still initializing

Use docker-compose logs valkey and
verify exposed ports

Data not persisted after restart Persistence settings are disabled Enable RDB and/or AOF in the
configuration file

Common Issues and Their Solutions

Upgrading a database service on Elestio can be done without creating a new instance or
performing a full manual migration. Elestio provides a built-in option to change the database
version directly from the dashboard. This is useful for cases where the upgrade does not involve
breaking changes or when minimal manual involvement is preferred. The version upgrade process
is handled by Elestio internally, including restarting the database service if required. This method
reduces the number of steps involved and provides a way to keep services up to date with minimal
configuration changes.

To begin the upgrade process, log in to your Elestio dashboard and navigate to the specific
database service you want to upgrade. It is important to verify that the correct instance is selected,
especially in environments where multiple databases are used for different purposes such as
staging, testing, or production. The dashboard interface provides detailed information for each
service, including version details, usage metrics, and current configuration. Ensure that you have
access rights to perform upgrades on the selected service. Identifying the right instance helps
avoid accidental changes to unrelated environments.

Before starting the upgrade, create a backup of your database. A backup stores the current state of
your data, schema, indexes, and configuration, which can be restored if something goes wrong
during the upgrade. In Elestio, this can be done through the Backups tab by selecting Back up
now under Manual local backups and Download the backup file. Scheduled backups may also be
used, but it is recommended to create a manual one just before the upgrade. Keeping a recent
backup allows quick recovery in case of errors or rollback needs. This is especially important in
production environments where data consistency is critical.

Upgrading to Major Version

Log In and Locate Your Service

Back Up Your Data

Once your backup is secure, proceed to the Overview and then Software > Update config tab
within your database service page.

Here, you'll find an option labeled ENV. In the ENV menu, change the desired database version to
SOFTWARE_VERSION . After confirming the version, Elestio will begin the upgrade process
automatically. During this time, the platform takes care of the version change and restarts the

Select the New Version

https://docs.elest.io/uploads/images/gallery/2025-07/screenshot-2025-07-04-at-1-21-54-pm.jpg
https://docs.elest.io/uploads/images/gallery/2025-07/screenshot-2025-07-04-at-1-22-42-pm.jpg

database if needed. No manual commands are required, and the system handles most of the
operational aspects in the background

The upgrade process may include a short downtime while the database restarts. Once it is
completed, it is important to verify that the upgrade was successful and the service is operating as
expected. Start by checking the logs available in the Elestio dashboard for any warnings or errors
during the process. Then, review performance metrics to ensure the database is running normally
and responding to queries. Finally, test the connection from your client applications to confirm that
they can interact with the upgraded database without issues.

Monitor the Upgrade Process

https://docs.elest.io/uploads/images/gallery/2025-07/screenshot-2025-07-04-at-1-23-05-pm.jpg

Valkey supports Redis-compatible modules to extend core database functionality with custom data
types, specialized algorithms, and advanced operations. These modules are compiled as shared
object (.so) files and must be loaded at server startup. Examples include RedisBloom, RedisJSON,
and RedisTimeSeries all of which are supported in Valkey just as in Redis.

In Elestio-hosted Valkey instances or any Docker Compose based setup, modules can be mounted
and loaded via configuration in docker-compose.yml. This guide outlines how to install, load, and
manage Valkey modules using Docker Compose, including verification steps, update methods, and
best practices.

Modules in Valkey must be loaded at server startup using the --loadmodule directive. These are .so
binaries typically mounted into the container from the host file system. The process is nearly
identical to Redis module integration.

To use a module such as RedisBloom in a Valkey Docker setup, mount the module file and add
the --loadmodule directive to the container command.

Explanation:

./modules/redisbloom.so is the local path on your host machine.
/data/redisbloom.so is the path where the module will be accessible inside the container.

Installing and Updating an
Extension

Installing and Enabling Valkey
Modules

Update docker-compose.yml

services:

 valkey:

 image: valkey/valkey:latest

 volumes:

 - ./modules/redisbloom.so:/data/redisbloom.so

 command: ["valkey-server", "--loadmodule", "/data/redisbloom.so"]

 ports:

 - "6379:6379"

Ensure that the .so file exists locally before running the container.

After updating the Docker Compose configuration, apply changes by restarting the container:

This reloads Valkey and ensures the module is initialized during startup.

Once Valkey is running, connect to the containerized service:

Run the following command to check for loaded modules:

Expected output (for RedisBloom):

This confirms that the module (in this case, bf for Bloom filters) has been loaded successfully.

Valkey modules must match the container’s runtime architecture and the Valkey version. Many
Redis modules work out-of-the-box with Valkey, but always check official documentation or test in
a controlled environment first.

To inspect module metadata and compatibility:

To confirm the current Valkey version and platform:

Restart the Valkey Service

docker-compose down

docker-compose up -d

Verify the Module is Loaded

docker-compose exec valkey valkey-cli -a <yourPassword>

MODULE LIST

1) 1) "name"

 2) "bf"

 3) "ver"

 4) (integer) 20207

Checking Module Availability &
Compatibility

INFO MODULES

If a module fails to load, check container logs for detailed error output:

Most load failures are caused by missing binaries, unsupported formats, or incorrect file paths.

Valkey does not support dynamic unloading of modules while the server is running. To update or
remove a module, the server must be stopped and restarted with the revised configuration.

Stop the container:

Edit docker-compose.yml as needed:

Update the .so path to reference the new module version.
Remove the --loadmodule line to disable the module entirely.

Start the container again:

Always test updated modules in staging before deploying to production environments.

Issue Cause Resolution

Valkey fails to start Invalid module path or
incompatible binary

Check docker-compose logs valkey and verify path
and architecture

MODULE command not
recognized

Image does not include module
support

Use an image like valkey/valkey:latest or
valkey/valkey:alpine

docker-compose exec valkey valkey-server --version

docker-compose logs valkey

Updating or Unloading Modules

docker-compose down

docker-compose up -d

Troubleshooting Common Module
Issues

Issue Cause Resolution

“Can’t open .so file” error Volume not mounted or file
permission denied

Confirm that the .so file exists and has readable
permissions

Module not listed in
MODULE LIST

Silent module load failure Review container logs and validate command syntax

Module commands not
recognized

Module did not load correctly Ensure Valkey version and module binary
compatibility

Modules execute native code within the Valkey process and inherit its permissions. As such, only
load trusted .so files compiled from official or reviewed source code. Avoid uploading or using
third-party binaries without auditing.

In Elestio-managed or containerized environments, use Docker’s file and user isolation to reduce
risk:

Set read-only permissions on mounted .so files.
Use non-root users inside containers when possible.
Monitor module behavior with SLOWLOG, INFO, and command auditing.

Improperly configured or malicious modules can cause crashes, memory leaks, or worse. Treat
modules as privileged extensions and keep them versioned and tested across environments.

Security Considerations

Regular backups are essential when running a Valkey deployment, especially if you’re using it for
persistent workloads. While Elestio provides automated backups for managed services by default,
you may still want to create manual backups before major configuration changes, retain local
archives, or test automation workflows. This guide covers several methods for creating Valkey
backups on Elestio via the dashboard, CLI, or Docker Compose. It also explains retention strategies
and automated backups using cron jobs.

If you’re using Elestio’s managed Valkey service, the simplest and most reliable way to perform a
full backup is through the Elestio dashboard. This creates a snapshot of your current Valkey
dataset and stores it in Elestio’s infrastructure. These snapshots can later be restored directly from
the dashboard, which is helpful when testing configuration changes or performing disaster
recovery.

To trigger a manual Valkey backup on Elestio:

Log in to the Elestio dashboard.
Navigate to your Valkey service or cluster.
Click the Backups tab in the service menu.
Choose Back up now to generate a manual snapshot.

Creating Manual Backups

Manual Service Backups on Elestio

https://dash.elest.io/
https://docs.elest.io/uploads/images/gallery/2025-07/9aTscreenshot-2025-07-04-at-1-21-54-pm.jpg

For Valkey instances deployed using Docker Compose (e.g., in Elestio self-hosted environments),
you can create manual backups by copying the internal persistence files RDB snapshots and
optionally AOF logs.

From the Elestio dashboard:

Go to your deployed Valkey service.
Navigate to Tools > Terminal and authenticate.

This is the standard project directory on Elestio-managed hosts where your docker-compose.yml
file resides.

By default, Valkey creates periodic snapshots based on configuration. To force an immediate one:

This generates a dump.rdb file in the container’s /data directory.

Use docker cp to extract the RDB snapshot file (and AOF if enabled) to your host machine:

If AOF persistence is enabled (appendonly yes in valkey.conf), back it up as well:

You now have point-in-time backups that can be restored later.

Manual Backups Using Docker
Compose

Access Elestio Terminal

Locate the Valkey Container Directory

cd /opt/app/

Trigger an RDB Snapshot (Optional)

docker-compose exec valkey valkey-cli SAVE

Copy Backup Files from the Container

docker cp $(docker-compose ps -q valkey):/data/dump.rdb ./backup_$(date +%F).rdb

docker cp $(docker-compose ps -q valkey):/data/appendonly.aof ./appendonly_$(date +%F).aof

Valkey backup files can be small (RDB) or large (AOF), depending on data size and write frequency.
It’s important to manage them properly.

Recommendations:

Use clear, timestamped names like valkey_backup_2025_06_24.rdb.
Store backups off-site or in the cloud (e.g., S3, Backblaze, or a secure remote server).
Retention policy: Keep 7 daily, 4 weekly, and 3–6 monthly backups.
Automate old backup cleanup with cron or shell scripts.
Optionally compress with gzip, xz, or zstd.

To automate Valkey backups, use cron to schedule daily backup tasks on Linux servers. This helps
maintain consistency and reduces the chance of human error.

Edit your crontab:

Add the following entry:

Make sure /backups/ exists and has write permissions for the cron user.

You can compress the file and upload it to cloud storage in the same cron job:

Backup Storage & Retention Best
Practices

Automating Valkey Backups (cron)

Example: Daily Backup at 3 AM

crontab -e

0 3 * * * docker-compose -f /opt/app/docker-compose.yml exec valkey valkey-cli SAVE && \

docker cp $(docker-compose -f /opt/app/docker-compose.yml ps -q valkey):/data/dump.rdb

/backups/valkey_backup_$(date +\%F).rdb

Optional Compression + Upload

gzip /backups/valkey_backup_$(date +\%F).rdb

rclone copy /backups/ remote:daily-valkey-backups

Format Description Restore Method

dump.rdb Binary snapshot of full dataset Stop Valkey, replace dump.rdb, and restart the container

appendonly.aof Command log (if enabled) Stop Valkey, replace AOF file, and restart the container

See Elestio’s Redis restore guide, which applies to Valkey as well:

Stop Valkey:

Replace the backup file in your volume mount (e.g., /data/dump.rdb or appendonly.aof).
Restart the service:

Backup Format and Restore Notes

To Restore a Backup

docker-compose down

docker-compose up -d

https://docs.elest.io/books/redis/page/creating-manual-backups#bkmrk-stop-redis-%28docker-c

Restoring Valkey backups is critical for disaster recovery, staging environment replication, or
rolling back to a known good state. Elestio supports restoration via its web dashboard and manual
methods using Docker Compose and command-line tools. This guide covers how to restore Valkey
backups from RDB or AOF files, for both full and partial restore scenarios, and includes fixes for
common errors during the process.

This method assumes you already have a backup file such as dump.rdb or appendonly.aof.
Restoring involves stopping the container, replacing the data file(s), and restarting Valkey so it can
load the new data at boot time.

Cleanly stop the container to prevent data corruption:

Move the desired backup file into the volume directory that maps to the Valkey container’s /data.

Example for RDB:

Ensure your docker-compose.yml contains the correct volume mapping:

For AOF-based persistence:

Restoring a Backup

Restoring from a Backup via
Terminal

Stop the Valkey Container

docker-compose down

Replace the Backup File

cp ./backup_2025_06_24.rdb /opt/app/data/dump.rdb

volumes:

 - ./data:/data

cp ./appendonly_2025_06_24.aof /opt/app/data/appendonly.aof

Restart Valkey

Bring the container back up:

Valkey will automatically load dump.rdb or appendonly.aof depending on its configuration in
valkey.conf or Docker entrypoint.

If you prefer working inside the container environment, you can directly inject the backup file into
the Valkey container using Docker commands.

For RDB:

For AOF:

Valkey will now reload the updated data file(s) during startup.

Valkey, like Redis, does not support partial data restoration out of the box. However, workarounds
exist to selectively restore key-value pairs or subsets of data.

If you’ve exported a list of keys and their values, you can restore them using a script with valkey-
cli:

docker-compose up -d

Restoring via Docker Compose
Terminal

Copy the Backup File into the Container

docker cp ./backup_2025_06_24.rdb $(docker-compose ps -q valkey):/data/dump.rdb

docker cp ./appendonly_2025_06_24.aof $(docker-compose ps -q valkey):/data/appendonly.aof

Restart the Valkey Container

docker-compose restart valkey

Partial Restores in Valkey

Restore Selected Keys via CLI

cat keys_to_restore.txt | while read key; do

 value=$(cat dump.json | jq -r ".\"$key\"")

This method is useful when working with pre-filtered exports in JSON, CSV, or key dumps.

If your backup is a trimmed-down AOF file (for example, created by filtering certain operations),
Valkey will replay it entirely at startup:

Replace the existing appendonly.aof file.
Restart the container.

Valkey will process only the included operations, effectively performing a partial restore.

Restoring Valkey may occasionally fail due to configuration mismatches, permission issues, or
corrupted backup files. Below are common errors and their solutions.

1. NOAUTH Authentication Required

Error:

Cause: The Valkey instance requires authentication for any CLI interaction.

Fix:

In scripts:

2. Valkey Fails to Start After Restore

Error:

Cause: The backup file is corrupted or incompatible with the Valkey version.

 valkey-cli SET "$key" "$value"

done

Restore from a Partial AOF

Common Errors & How to Fix Them

(error) NOAUTH Authentication required.

valkey-cli -a yourpassword

valkey-cli -a "$VALKEY_PASSWORD" < restore_script.txt

Fatal error loading the DB: Invalid RDB format

Fix:

Make sure the backup was created with the same or a compatible Valkey version.
If necessary, downgrade or upgrade the container image to match the backup version.

3. Data Not Restored

Cause: Valkey is configured to use a different persistence method than the one you restored.

Fix:

Check your persistence mode in valkey.conf or Docker entry:

Ensure the right file (dump.rdb or appendonly.aof) exists at /data.

4. Permission Denied When Copying Files

Error:

Fix:

Use sudo if your shell user doesn’t have write access:

Or adjust directory permissions as needed.

appendonly yes # for AOF

appendonly no # for RDB

cp: cannot create regular file ‘/opt/app/data/dump.rdb’: Permission denied

sudo cp ./backup_2025_06_24.rdb /opt/app/data/dump.rdb

sudo chown $USER:$USER /opt/app/data

Slow commands can impact Valkey performance, especially under high concurrency or when
inefficient data access patterns are used. Whether you’re running Valkey on Elestio via the
dashboard, inside a Docker Compose setup, or accessing it through the CLI, Valkey includes
powerful introspection tools like the slow log and latency tracking.

This guide shows how to detect slow operations using Valkey’s built-in slowlog, analyze latency
issues, and optimize performance through configuration tuning and query best practices.

Valkey supports the Redis-compatible SLOWLOG feature to record commands that exceed a
configured execution time threshold. These logs are useful to spot expensive operations and server
stalls.

Use valkey-cli or redis-cli to connect to your Valkey instance:

Replace <host>, <port>, and <password> with the credentials available in your Elestio
dashboard.

Check what execution time (in microseconds) is considered “slow”:

The default is 10000 (10 milliseconds). Commands slower than this will be logged.

To retrieve recent slow operations:

Identifying Slow Queries

Inspecting Slow Commands from the
Terminal

Connect to Your Valkey Instance via Terminal

valkey-cli -h <host> -p <port> -a <password>

View the Slowlog Threshold

CONFIG GET slowlog-log-slower-than

View the Slow Query Logs

SLOWLOG GET 10

This shows the 10 most recent slowlog entries, each with:

The command that was executed
The timestamp
Execution duration in microseconds
Any arguments passed to the command

If you’re running Valkey via Docker Compose, you can inspect slow queries from within the
container environment.

Launch a shell in your container:

Connect to Valkey using:

Ensure that VALKEY_PASSWORD is defined in your .env file or Compose environment variables.

You can view or modify the slowlog threshold dynamically:

This temporarily changes the threshold to 5 milliseconds, which is useful for debugging under lower
latency conditions.

Check how many slowlog entries are retained:

To store more slowlog entries:

Analyzing Inside Docker Compose

Access the Valkey Container

docker-compose exec valkey bash

valkey-cli -a $VALKEY_PASSWORD

Adjust Slowlog Settings

CONFIG SET slowlog-log-slower-than 5000

Increase the Number of Stored Entries

CONFIG GET slowlog-max-len

CONFIG SET slowlog-max-len 256

This helps in long-running investigations or during load testing.

Valkey inherits Redis’s latency monitoring tools, providing additional insights beyond command
duration such as fork stalls, I/O blocks, or memory pressure.

Latency tracking is often enabled by default. Run:

This provides a high-level diagnostic report of system latency spikes and potential root causes,
including slow commands, AOF rewrites, and blocking operations.

Track the latency of specific operations like:

Other event categories include:

fork – Background save or AOF rewrite delays
aof-write – Append-only file sync lag
command – General command execution delays

Valkey performance can degrade due to specific patterns of usage, large keys, blocking
commands, or non-optimized pipelines.

Large keys: Commands like LRANGE, SMEMBERS, or HGETALL on large datasets.
Blocking commands: Such as BLPOP, BRPOP, or long-running Lua scripts.
Forking delays: Caused by SAVE or AOF background rewriting.

Using the Latency Monitoring
Feature

Enable Latency Monitoring

LATENCY DOCTOR

View Latency History for Specific Events

LATENCY HISTORY command

Understanding and Resolving
Common Bottlenecks

Common Causes of Slowness

Use SCAN instead of KEYS to iterate large keyspaces safely.
Limit range queries: Use LRANGE 0 99 instead of fetching full lists.
Enable pipelining: Reduce round trips by batching commands.
Avoid multi-key ops: Especially in clustered deployments, where they can cause
performance issues or fail.

Valkey performance can be significantly tuned by adjusting memory and persistence-related
settings.

These adjust eviction and persistence behaviours. Use these with caution:

Disabling RDB/AOF improves speed but removes durability.
LRU/TTL policies control memory usage under load.

Best Practices for Performance

Optimizing with Configuration
Changes

Common Tuning Examples

CONFIG SET maxmemory-policy allkeys-lru

CONFIG SET save ""

Optimizing memory usage in Valkey is essential for maintaining performance, especially in
production environments like Elestio. Without proper memory control, large datasets, long-lived
keys, or inefficient operations can lead to high memory pressure, slowdowns, or even server
crashes. This guide explains how to optimize memory usage, monitor for memory-related issues,
and configure automatic cleanup using Docker Compose environments.

Valkey allocates memory based on data structure usage and background operations like
persistence or replication. It is important to monitor key memory indicators such as used memory,
memory fragmentation, peak memory, and memory policy to understand how your instance
behaves under load.

To inspect memory statistics from the command line, use the INFO MEMORY command:

This command returns a detailed report including used_memory, used_memory_rss,
mem_fragmentation_ratio, and maxmemory. A high fragmentation ratio may indicate inefficient
memory usage or a need to tune your allocator.

If you are running Valkey in a Docker Compose environment, connect to the container first:

Once inside, run:

This gives you full access to execute monitoring and configuration commands.

Detect and terminate long-
running queries

Understanding Valkey Memory Behaviour

Monitoring Valkey Memory in Real Time

valkey-cli -a <password> INFO MEMORY

docker-compose exec valkey bash

valkey-cli -a $VALKEY_PASSWORD

To avoid out-of-memory errors, it is crucial to set a memory cap and enable eviction. Edit your
valkey.conf or set these at runtime:

The maxmemory setting defines the upper limit of memory usage. The maxmemory-policy
determines how keys are evicted when that limit is reached. Recommended policies include:

allkeys-lru: Evicts the least recently used keys across all keys
volatile-lru: Evicts LRU keys with expiration set
noeviction: Rejects writes when memory is full (not recommended in production)

Use the built-in MEMORY STATS command for a high-level breakdown of memory usage by
component:

This provides statistics on memory overhead, allocator efficiency, and usage by data structure
types.

Expired keys in Valkey are removed passively upon access or through background expiration
cycles. To force cleanup manually or test expiration behavior:

This clears internal allocator caches and triggers background memory cleanup without deleting live
keys. Use this cautiously in production environments.

You can use the MEMORY USAGE command to inspect which keys consume the most memory. For
example:

Setting Maximum Memory and Eviction
Policy

CONFIG SET maxmemory 512mb

CONFIG SET maxmemory-policy allkeys-lru

Analyzing Memory Usage with MEMORY
STATS

MEMORY STATS

Cleaning Up Expired or Unused Keys

MEMORY PURGE

Listing Keys Consuming the Most Memory

To automate finding the top memory-consuming keys, use a loop with SCAN and MEMORY USAGE:

Then evaluate MEMORY USAGE per key manually or using a script.

Minimize memory pressure by following these recommendations:

Avoid large keys: Break large values into smaller hashes or lists to reduce memory
footprint and allow efficient partial retrieval.
Expire non-essential keys: Always set TTLs on cache data or temporary states using
EXPIRE or SETEX .
Avoid full dataset scans: Replace commands like KEYS * with SCAN to prevent memory
spikes.
Limit big lists or sets: Use commands like LRANGE mylist 0 99 instead of fetching entire
datasets with LRANGE mylist 0 -1 .
Use lazy data loading: Design applications to load only required data in batches.

Track historical memory usage using the INFO MEMORY and LATENCY DOCTOR commands
periodically, and export metrics to Prometheus or another monitoring system if needed.

Consider integrating Valkey with monitoring tools like:

Grafana with Prometheus Exporter
Elestio’s built-in monitoring agent

These help you visualize and react to memory growth trends in real time.

Optimizing Valkey’s memory usage is essential to running reliable, responsive services. By
configuring maxmemory , choosing an appropriate eviction policy, monitoring key memory metrics,
and cleaning up expired data, you can ensure predictable performance under load. Combine these
strategies with external monitoring for long-term stability in Docker Compose environments like
Elestio.

MEMORY USAGE mykey

SCAN 0 COUNT 100

Best Practices for Valkey Memory
Management

Monitoring Memory Growth Over
Time

Running out of disk space in a Valkey environment can result in failed writes, background save
errors, and degraded availability. Valkey, like Redis, uses disk storage for persistence (RDB and
AOF), temporary files, and logs especially when persistence is enabled. On managed hosting
platforms like Elestio, while infrastructure maintenance is handled, it is up to the user to monitor
disk space, configure retention settings, and perform regular cleanups. This guide walks through
how to monitor disk usage, configure alerts, remove unnecessary data, and apply best practices for
avoiding full disk issues in a Valkey setup under Docker Compose

Disk usage monitoring helps identify abnormal growth patterns and prevents outages due to
insufficient storage. In Docker Compose environments, both host-level and container-level
monitoring are essential.

Run the following command on the host to check overall disk usage and determine which mount
point is filling up:

This displays disk usage statistics across volumes. Locate the mount point corresponding to your
Valkey data volume—typically something like /var/lib/docker/volumes/valkey_data/_data.

To get insight into the container’s internal disk usage, first enter the container shell:

Once inside the container, assess the size of the data directory with:

This reveals the total size used by Valkey data files, such as appendonly.aof, dump.rdb, and
temporary files. You can also list file-level details with:

Preventing Full Disk

Monitoring Disk Usage

Inspect the host system storage

df -h

Check disk usage from inside the container

docker-compose exec valkey sh

du -sh /data

ls -lh /data

This helps identify which files are occupying the most space.

Monitoring disk usage is not enough; you must also set up alerts and take action to reclaim space.
On the host system, analyze Docker resource usage with:

This provides insights into how much space is consumed by images, volumes, and containers.

To list all volumes on the host, run:

If you find a volume that is unused and safe to delete, remove it with:

Make sure you do not delete the volume mapped to your Valkey data directory unless it is backed
up and verified to be unused.

When using AOF persistence, the append-only file may grow large over time. You can reduce its
size by triggering a background rewrite:

This creates a compacted version of the AOF file with the same dataset.

RDB snapshots accumulate over time if not managed. They are stored in the /data directory inside
the container. To list them, run:

Remove old .rdb files with:

Configuring Alerts and Cleaning Up
Storage

docker system df

Identify unused Docker volumes

docker volume ls

docker volume rm <volume-name>

Trigger AOF file compaction

docker-compose exec valkey valkey-cli BGREWRITEAOF

Clean up old snapshots

docker-compose exec valkey ls -lh /data

Ensure that any snapshot you remove is not needed for recovery.

Valkey creates temporary files during fork operations, such as when saving snapshots or rewriting
AOF files. These are typically stored in /tmp inside the container.

You can inspect the size of the temporary directory with:

If this directory becomes full, forked operations like BGSAVE or BGREWRITEAOF may fail. To
mitigate this, you can change the temporary directory path in valkey.conf to use a volume-backed
location like /data:

Restart the container after making this configuration change.

Effective disk space management in Valkey depends on adopting a forward-looking configuration
and consistent housekeeping.

Avoid storing large binary blobs directly in Valkey. Instead, keep files like PDFs, images,
and other large media in external object storage and only store metadata or keys in
Valkey.
If persistence is not required, disable it entirely to reduce disk usage. This is useful for
cache-only workloads:

docker-compose exec valkey rm /data/dump-<timestamp>.rdb

Managing and Optimizing Temporary
Files

Monitor temporary file usage

docker-compose exec valkey du -sh /tmp

dir /data

Best Practices for Disk Space
Management

appendonly no

save ""

To avoid uncontrolled AOF file growth, configure rewrite thresholds in valkey.conf:

Set up log rotation if your container logs to files such as /var/log/valkey/valkey-server.log.
This can be managed using logrotate on the host system, or via Docker logging options in
docker-compose.yml:

Always use TTLs for cache or session keys to avoid indefinite storage growth. For
example:

Track memory and persistence statistics with:

Backup files stored in /data should be offloaded to a remote location. Use Elestio’s built-in backup
options or mount a dedicated remote volume using your docker-compose.yml to ensure backups
do not consume host disk space indefinitely.

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

SET session:<id> "data" EX 3600

docker-compose exec valkey valkey-cli INFO memory

docker-compose exec valkey valkey-cli INFO persistence

As your Valkey data grows especially when using persistence modes like RDB or AOF it’s essential
to monitor how disk and memory resources are consumed. Uncontrolled growth can result in full
disks, write failures, longer restarts, and issues with snapshot backups. While Elestio handles
infrastructure hosting, managing storage cleanup and optimization is the user’s responsibility. This
guide shows how to inspect keyspace usage, analyze persistence files, detect memory bloat, and
tune your Valkey deployment under Docker Compose.

Like Redis, Valkey doesn’t have schemas or tables but provides insights through built-in commands
and memory metrics.

Connect to the container:

Look at used_memory_human and maxmemory to understand current usage and configured limits.

You’ll see entries like:

This helps identify how many keys are temporary and whether the dataset will grow indefinitely.

Valkey writes persistence files to /data inside the container:

Checking Database Size and
Related Issues

Checking Keyspace Usage and Persistence
File Size

Check total memory used by Valkey

docker-compose exec valkey valkey-cli INFO memory

Inspect key count and TTL stats

docker-compose exec valkey valkey-cli INFO keyspace

db0:keys=2400,expires=2100,avg_ttl=36000000

View on-disk file sizes

docker-compose exec valkey sh -c "ls -lh /data"

Check the size of dump.rdb, appendonly.aof, and any temporary files.

Valkey supports Redis commands and adds community-focused improvements, but it can still
suffer from memory inefficiencies if not monitored properly.

This reveals large keys by data type, helping you spot high-memory structures like oversized lists
or sets.

This helps profile storage-heavy keys by prefix or type.

If mem_fragmentation_ratio is over 1.2, it may indicate inefficient memory allocation.

Once you’ve identified bloated memory areas or oversized persistence files, you can apply
optimizations.

This rewrites and reduces the size of appendonly.aof.

To bulk-delete keys by pattern (use with caution):

Detecting Bloat and Unused Space

Estimate memory usage by key pattern

docker-compose exec valkey valkey-cli --bigkeys

Analyze memory per key (manual sample)

docker-compose exec valkey valkey-cli MEMORY USAGE some:key

Check memory fragmentation

docker-compose exec valkey valkey-cli INFO memory | grep fragmentation

Optimizing and Reclaiming Valkey Storage

Compact the AOF file

docker-compose exec valkey valkey-cli BGREWRITEAOF

Delete unused keys or apply TTLs

docker-compose exec valkey valkey-cli DEL obsolete:key

docker-compose exec valkey valkey-cli EXPIRE session:1234 3600

In your mounted valkey.conf:

Restart the container to apply these changes. This ensures automatic cleanup when memory
thresholds are exceeded.

Use TTLs on non-permanent keys: Set expiration on cache/session data to avoid
unbounded key growth.
Avoid storing binary files in Valkey: Keep large files (images, documents, etc.) in object
storage. Use Valkey only for metadata.
Rotate container logs: In your docker-compose.yml:

Use compact data structures: Favor HASH, SET, or ZSET over storing entire JSON blobs as
STRING.
Monitor and control AOF size: Configure AOF rewrite frequency in valkey.conf:

Archive old analytical data: Periodically move old metrics, logs, or time-series entries to
cold storage.
Externalize backups: Use Elestio’s backup features or configure external volumes/cloud
storage to avoid accumulating snapshots on the same disk used for live data.

docker-compose exec valkey valkey-cli --scan --pattern "temp:*" | xargs -n 100 valkey-cli DEL

Configure eviction policies

maxmemory 1gb

maxmemory-policy allkeys-lru

Best Practices for Valkey Storage
Management

logging:

 driver: "json-file"

 options:

 max-size: "10m"

 max-file: "3"

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

